Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999683408> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2999683408 abstract "Detection and classification of vehicles are inseparable parts of Intelligent Transportation Systems (ITS), various kinds of information technology applications are used to be able to detect and classify these vehicles, starting with the use of ultrasonic sensors, laser scanners, induction loops, magnetic sensors, range sensors, pressure sensors and CCTV cameras, but the circulation of vehicles with the same design from different manufacturing companies makes the classification of vehicles to determine the vehicle brands and types difficult to do. In this paper, deep learning framework Mask Regional-Convolutional Neural Network (Mask R-CNN) is used to solve the problem. Experiments have been conducted twice by using a combination of different datasets and detection algorithms. To be able to distinguish cars with similar shapes from different manufacturers, we use vehicle logos as one of the features that distinguish the manufacturer. The best detection and classification results were obtained in dataset training using 60 epoch, 400 step iterations with an accuracy value of 0.91 and mAP (Mean Average Precision) of 0.89." @default.
- W2999683408 created "2020-01-23" @default.
- W2999683408 creator A5025422390 @default.
- W2999683408 creator A5033301861 @default.
- W2999683408 creator A5036919699 @default.
- W2999683408 date "2019-08-01" @default.
- W2999683408 modified "2023-09-26" @default.
- W2999683408 title "Vehicle Brands and Types Detection Using Mask R-CNN" @default.
- W2999683408 cites W2031489346 @default.
- W2999683408 cites W2063995008 @default.
- W2999683408 cites W2117539524 @default.
- W2999683408 cites W2240054630 @default.
- W2999683408 cites W2508384486 @default.
- W2999683408 cites W2537365178 @default.
- W2999683408 cites W2587195931 @default.
- W2999683408 cites W2724211004 @default.
- W2999683408 cites W2735971271 @default.
- W2999683408 cites W2743563947 @default.
- W2999683408 cites W2744580266 @default.
- W2999683408 cites W2782749975 @default.
- W2999683408 cites W2783186476 @default.
- W2999683408 cites W2793806867 @default.
- W2999683408 cites W2800554271 @default.
- W2999683408 cites W2811198925 @default.
- W2999683408 cites W2890882988 @default.
- W2999683408 cites W2963150697 @default.
- W2999683408 cites W639708223 @default.
- W2999683408 doi "https://doi.org/10.1109/isitia.2019.8937278" @default.
- W2999683408 hasPublicationYear "2019" @default.
- W2999683408 type Work @default.
- W2999683408 sameAs 2999683408 @default.
- W2999683408 citedByCount "4" @default.
- W2999683408 countsByYear W29996834082022 @default.
- W2999683408 countsByYear W29996834082023 @default.
- W2999683408 crossrefType "proceedings-article" @default.
- W2999683408 hasAuthorship W2999683408A5025422390 @default.
- W2999683408 hasAuthorship W2999683408A5033301861 @default.
- W2999683408 hasAuthorship W2999683408A5036919699 @default.
- W2999683408 hasConcept C108583219 @default.
- W2999683408 hasConcept C153180895 @default.
- W2999683408 hasConcept C154945302 @default.
- W2999683408 hasConcept C31972630 @default.
- W2999683408 hasConcept C41008148 @default.
- W2999683408 hasConcept C50644808 @default.
- W2999683408 hasConcept C81363708 @default.
- W2999683408 hasConceptScore W2999683408C108583219 @default.
- W2999683408 hasConceptScore W2999683408C153180895 @default.
- W2999683408 hasConceptScore W2999683408C154945302 @default.
- W2999683408 hasConceptScore W2999683408C31972630 @default.
- W2999683408 hasConceptScore W2999683408C41008148 @default.
- W2999683408 hasConceptScore W2999683408C50644808 @default.
- W2999683408 hasConceptScore W2999683408C81363708 @default.
- W2999683408 hasLocation W29996834081 @default.
- W2999683408 hasOpenAccess W2999683408 @default.
- W2999683408 hasPrimaryLocation W29996834081 @default.
- W2999683408 hasRelatedWork W2621864722 @default.
- W2999683408 hasRelatedWork W2732542196 @default.
- W2999683408 hasRelatedWork W2733060750 @default.
- W2999683408 hasRelatedWork W2738221750 @default.
- W2999683408 hasRelatedWork W2760944304 @default.
- W2999683408 hasRelatedWork W2773120646 @default.
- W2999683408 hasRelatedWork W2807839383 @default.
- W2999683408 hasRelatedWork W2920938200 @default.
- W2999683408 hasRelatedWork W4200390792 @default.
- W2999683408 hasRelatedWork W564581980 @default.
- W2999683408 isParatext "false" @default.
- W2999683408 isRetracted "false" @default.
- W2999683408 magId "2999683408" @default.
- W2999683408 workType "article" @default.