Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999683817> ?p ?o ?g. }
- W2999683817 endingPage "14819" @default.
- W2999683817 startingPage "14809" @default.
- W2999683817 abstract "Traditional DOA estimation algorithms have poor adaptability to antenna errors. To enhance the direction of arrival (DOA) estimation performance for moving target echo signals in the environment of multiple type illuminators of opportunity, a DOA estimation framework leveraging deep learning networks (DLN) is proposed. In the proposed framework, the DLN is divided into two main components, including linear classification networks (LCN) and convolutional neural networks (CCN). The LCN is utilized to identify the spatial subregion of received signals and divide the signals from each subregion into corresponding output modules. Then, the output of the LCN after matrix transformations will be input into multiple parallel CNNs, where DOA estimations are carried out. Extensive simulation studies are conducted, demonstrating that our proposed method has excellent estimation performance and strong universality with high estimation accuracy even under large antenna defects." @default.
- W2999683817 created "2020-01-23" @default.
- W2999683817 creator A5015266516 @default.
- W2999683817 creator A5022196520 @default.
- W2999683817 creator A5028317828 @default.
- W2999683817 creator A5034754948 @default.
- W2999683817 creator A5060002668 @default.
- W2999683817 creator A5071739164 @default.
- W2999683817 creator A5085386121 @default.
- W2999683817 date "2020-01-01" @default.
- W2999683817 modified "2023-10-10" @default.
- W2999683817 title "DOA Robust Estimation of Echo Signals Based on Deep Learning Networks With Multiple Type Illuminators of Opportunity" @default.
- W2999683817 cites W1979972347 @default.
- W2999683817 cites W1986439111 @default.
- W2999683817 cites W2002295160 @default.
- W2999683817 cites W2049808850 @default.
- W2999683817 cites W2122466069 @default.
- W2999683817 cites W2132279897 @default.
- W2999683817 cites W2293425103 @default.
- W2999683817 cites W2297603755 @default.
- W2999683817 cites W2430926815 @default.
- W2999683817 cites W2542397924 @default.
- W2999683817 cites W2623390781 @default.
- W2999683817 cites W2727037623 @default.
- W2999683817 cites W2753115662 @default.
- W2999683817 cites W2762859579 @default.
- W2999683817 cites W2775620157 @default.
- W2999683817 cites W2795042235 @default.
- W2999683817 cites W2810871807 @default.
- W2999683817 cites W2885219692 @default.
- W2999683817 cites W2897361856 @default.
- W2999683817 cites W2897977894 @default.
- W2999683817 cites W2901567739 @default.
- W2999683817 cites W2911594606 @default.
- W2999683817 cites W2912665137 @default.
- W2999683817 cites W2917973279 @default.
- W2999683817 cites W2921013720 @default.
- W2999683817 cites W2922160984 @default.
- W2999683817 cites W2948553538 @default.
- W2999683817 cites W2998711990 @default.
- W2999683817 doi "https://doi.org/10.1109/access.2020.2966653" @default.
- W2999683817 hasPublicationYear "2020" @default.
- W2999683817 type Work @default.
- W2999683817 sameAs 2999683817 @default.
- W2999683817 citedByCount "11" @default.
- W2999683817 countsByYear W29996838172020 @default.
- W2999683817 countsByYear W29996838172021 @default.
- W2999683817 countsByYear W29996838172022 @default.
- W2999683817 countsByYear W29996838172023 @default.
- W2999683817 crossrefType "journal-article" @default.
- W2999683817 hasAuthorship W2999683817A5015266516 @default.
- W2999683817 hasAuthorship W2999683817A5022196520 @default.
- W2999683817 hasAuthorship W2999683817A5028317828 @default.
- W2999683817 hasAuthorship W2999683817A5034754948 @default.
- W2999683817 hasAuthorship W2999683817A5060002668 @default.
- W2999683817 hasAuthorship W2999683817A5071739164 @default.
- W2999683817 hasAuthorship W2999683817A5085386121 @default.
- W2999683817 hasBestOaLocation W29996838171 @default.
- W2999683817 hasConcept C108583219 @default.
- W2999683817 hasConcept C11413529 @default.
- W2999683817 hasConcept C153180895 @default.
- W2999683817 hasConcept C154945302 @default.
- W2999683817 hasConcept C172051844 @default.
- W2999683817 hasConcept C177606310 @default.
- W2999683817 hasConcept C18903297 @default.
- W2999683817 hasConcept C21822782 @default.
- W2999683817 hasConcept C2779426996 @default.
- W2999683817 hasConcept C31258907 @default.
- W2999683817 hasConcept C41008148 @default.
- W2999683817 hasConcept C50644808 @default.
- W2999683817 hasConcept C76155785 @default.
- W2999683817 hasConcept C81363708 @default.
- W2999683817 hasConcept C86803240 @default.
- W2999683817 hasConceptScore W2999683817C108583219 @default.
- W2999683817 hasConceptScore W2999683817C11413529 @default.
- W2999683817 hasConceptScore W2999683817C153180895 @default.
- W2999683817 hasConceptScore W2999683817C154945302 @default.
- W2999683817 hasConceptScore W2999683817C172051844 @default.
- W2999683817 hasConceptScore W2999683817C177606310 @default.
- W2999683817 hasConceptScore W2999683817C18903297 @default.
- W2999683817 hasConceptScore W2999683817C21822782 @default.
- W2999683817 hasConceptScore W2999683817C2779426996 @default.
- W2999683817 hasConceptScore W2999683817C31258907 @default.
- W2999683817 hasConceptScore W2999683817C41008148 @default.
- W2999683817 hasConceptScore W2999683817C50644808 @default.
- W2999683817 hasConceptScore W2999683817C76155785 @default.
- W2999683817 hasConceptScore W2999683817C81363708 @default.
- W2999683817 hasConceptScore W2999683817C86803240 @default.
- W2999683817 hasFunder F4320321001 @default.
- W2999683817 hasFunder F4320321543 @default.
- W2999683817 hasFunder F4320322725 @default.
- W2999683817 hasFunder F4320327912 @default.
- W2999683817 hasFunder F4320335471 @default.
- W2999683817 hasLocation W29996838171 @default.
- W2999683817 hasLocation W29996838172 @default.
- W2999683817 hasOpenAccess W2999683817 @default.
- W2999683817 hasPrimaryLocation W29996838171 @default.
- W2999683817 hasRelatedWork W2731899572 @default.