Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999684630> ?p ?o ?g. }
- W2999684630 endingPage "101846" @default.
- W2999684630 startingPage "101846" @default.
- W2999684630 abstract "Abstract Background and Objective Microscope images are used for cell biology and clinical analysis. In general, microscopic images of 10× magnification are frequently used for cell imaging because of environmental limitations such as reagent drying, photo-bleaching, and photo-toxicity. However, there is a limit to the image quality of a 10× image to obtain more accurate information. Therefore, it is necessary to improve the image quality. Methods In this paper, we propose a novel method to improve quantification accuracy using a super-resolution with a convolutional neural network (CNN) with image-based cell phenotypic profiling to predict the responses of glioblastoma cells to a drug using automatic image processing. For this approach, we first generate 40× high-quality images from originally obtained 10× images using a CNN-based method. Next, we manually obtain segmented images from three experts as ground-truth images to evaluate the quantitative improvement of segmentation. Intensity-based automatic segmentation results for cell nuclei morphological features for the 10× original images and CNN-based 40× images are compared with the ground-truth images. Results The segmentation accuracy of the CNN-based 40× images is more similar to that of the manual segmenting results than that of the 10× images, as the Sorensen–Dice similarity coefficient. In addition, the CNN-based 40× image results are more similar to those of the manual results than those of the 10× images. Conclusions We confirmed that the proposed method is more effective than the conventional method. It is expected that this approach will be helpful in evaluating the drug responses of patients by improving the accuracy of image-based cell phenotypic profiling." @default.
- W2999684630 created "2020-01-23" @default.
- W2999684630 creator A5005016006 @default.
- W2999684630 creator A5012644755 @default.
- W2999684630 creator A5018929039 @default.
- W2999684630 creator A5033767830 @default.
- W2999684630 creator A5047906249 @default.
- W2999684630 creator A5053436629 @default.
- W2999684630 creator A5070906604 @default.
- W2999684630 creator A5071501594 @default.
- W2999684630 creator A5073039234 @default.
- W2999684630 date "2020-04-01" @default.
- W2999684630 modified "2023-09-27" @default.
- W2999684630 title "Accuracy improvement of quantification information using super-resolution with convolutional neural network for microscopy images" @default.
- W2999684630 cites W1498433979 @default.
- W2999684630 cites W1885185971 @default.
- W2999684630 cites W1963882359 @default.
- W2999684630 cites W1989396876 @default.
- W2999684630 cites W1993267702 @default.
- W2999684630 cites W2015706984 @default.
- W2999684630 cites W2025818287 @default.
- W2999684630 cites W2091781764 @default.
- W2999684630 cites W2092089104 @default.
- W2999684630 cites W2106924853 @default.
- W2999684630 cites W2107554012 @default.
- W2999684630 cites W2109890799 @default.
- W2999684630 cites W2131579659 @default.
- W2999684630 cites W2141122227 @default.
- W2999684630 cites W2142054519 @default.
- W2999684630 cites W2150151285 @default.
- W2999684630 cites W2151538727 @default.
- W2999684630 cites W2167279371 @default.
- W2999684630 cites W2202975567 @default.
- W2999684630 cites W2322870089 @default.
- W2999684630 cites W2471685161 @default.
- W2999684630 cites W2614949728 @default.
- W2999684630 cites W2787020583 @default.
- W2999684630 cites W2795777276 @default.
- W2999684630 cites W2801396275 @default.
- W2999684630 cites W2967934012 @default.
- W2999684630 cites W2001517243 @default.
- W2999684630 doi "https://doi.org/10.1016/j.bspc.2020.101846" @default.
- W2999684630 hasPublicationYear "2020" @default.
- W2999684630 type Work @default.
- W2999684630 sameAs 2999684630 @default.
- W2999684630 citedByCount "14" @default.
- W2999684630 countsByYear W29996846302020 @default.
- W2999684630 countsByYear W29996846302021 @default.
- W2999684630 countsByYear W29996846302022 @default.
- W2999684630 countsByYear W29996846302023 @default.
- W2999684630 crossrefType "journal-article" @default.
- W2999684630 hasAuthorship W2999684630A5005016006 @default.
- W2999684630 hasAuthorship W2999684630A5012644755 @default.
- W2999684630 hasAuthorship W2999684630A5018929039 @default.
- W2999684630 hasAuthorship W2999684630A5033767830 @default.
- W2999684630 hasAuthorship W2999684630A5047906249 @default.
- W2999684630 hasAuthorship W2999684630A5053436629 @default.
- W2999684630 hasAuthorship W2999684630A5070906604 @default.
- W2999684630 hasAuthorship W2999684630A5071501594 @default.
- W2999684630 hasAuthorship W2999684630A5073039234 @default.
- W2999684630 hasConcept C120665830 @default.
- W2999684630 hasConcept C121332964 @default.
- W2999684630 hasConcept C138268822 @default.
- W2999684630 hasConcept C147080431 @default.
- W2999684630 hasConcept C153180895 @default.
- W2999684630 hasConcept C154945302 @default.
- W2999684630 hasConcept C31972630 @default.
- W2999684630 hasConcept C41008148 @default.
- W2999684630 hasConcept C50644808 @default.
- W2999684630 hasConcept C81363708 @default.
- W2999684630 hasConceptScore W2999684630C120665830 @default.
- W2999684630 hasConceptScore W2999684630C121332964 @default.
- W2999684630 hasConceptScore W2999684630C138268822 @default.
- W2999684630 hasConceptScore W2999684630C147080431 @default.
- W2999684630 hasConceptScore W2999684630C153180895 @default.
- W2999684630 hasConceptScore W2999684630C154945302 @default.
- W2999684630 hasConceptScore W2999684630C31972630 @default.
- W2999684630 hasConceptScore W2999684630C41008148 @default.
- W2999684630 hasConceptScore W2999684630C50644808 @default.
- W2999684630 hasConceptScore W2999684630C81363708 @default.
- W2999684630 hasFunder F4320321314 @default.
- W2999684630 hasFunder F4320322120 @default.
- W2999684630 hasLocation W29996846301 @default.
- W2999684630 hasOpenAccess W2999684630 @default.
- W2999684630 hasPrimaryLocation W29996846301 @default.
- W2999684630 hasRelatedWork W2175746458 @default.
- W2999684630 hasRelatedWork W2732542196 @default.
- W2999684630 hasRelatedWork W2738221750 @default.
- W2999684630 hasRelatedWork W2758063741 @default.
- W2999684630 hasRelatedWork W2760085659 @default.
- W2999684630 hasRelatedWork W2912288872 @default.
- W2999684630 hasRelatedWork W3012978760 @default.
- W2999684630 hasRelatedWork W3081496756 @default.
- W2999684630 hasRelatedWork W3093612317 @default.
- W2999684630 hasRelatedWork W4304820710 @default.
- W2999684630 hasVolume "58" @default.
- W2999684630 isParatext "false" @default.
- W2999684630 isRetracted "false" @default.