Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999686948> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2999686948 abstract "With the explosion of Big Data, fast and frugal reasoning algorithms are increasingly needed to keep up with the size and the pace of user-generated contents on the Web. In many real-time applications, it is preferable to be able to process more data with reasonable accuracy rather than having higher accuracy over a smaller set of data. In this work, we leverage on both random features and random neurons to perform analogical reasoning over Big Data. Due to their big size and dynamic nature, in fact, Big Data are hard to process with standard dimensionality reduction techniques and clustering algorithms. To this end, we apply random projection to generate a multi-dimensional vector space of commonsense knowledge and use an extreme learning machine to perform reasoning on it. In particular, the combined use of random multi-dimensional scaling and randomly-initialized learning methods allows for both better representation of high-dimensional data and more efficient discovery of their semantic and affective relatedness." @default.
- W2999686948 created "2020-01-23" @default.
- W2999686948 creator A5026022035 @default.
- W2999686948 creator A5062211930 @default.
- W2999686948 creator A5068981769 @default.
- W2999686948 date "2019-11-01" @default.
- W2999686948 modified "2023-09-26" @default.
- W2999686948 title "Random Features and Random Neurons for Brain-Inspired Big Data Analytics" @default.
- W2999686948 cites W1511480444 @default.
- W2999686948 cites W1868188096 @default.
- W2999686948 cites W1965235124 @default.
- W2999686948 cites W1971014294 @default.
- W2999686948 cites W1974051946 @default.
- W2999686948 cites W1989792746 @default.
- W2999686948 cites W1993816389 @default.
- W2999686948 cites W1997120656 @default.
- W2999686948 cites W1997254067 @default.
- W2999686948 cites W2019109450 @default.
- W2999686948 cites W2037757210 @default.
- W2999686948 cites W2045390367 @default.
- W2999686948 cites W2048101063 @default.
- W2999686948 cites W2052164429 @default.
- W2999686948 cites W2089497633 @default.
- W2999686948 cites W2091084672 @default.
- W2999686948 cites W2101674911 @default.
- W2999686948 cites W2108300325 @default.
- W2999686948 cites W2111072639 @default.
- W2999686948 cites W2148174578 @default.
- W2999686948 cites W2172153252 @default.
- W2999686948 cites W2587373731 @default.
- W2999686948 cites W2766718178 @default.
- W2999686948 cites W2912258029 @default.
- W2999686948 cites W2943547402 @default.
- W2999686948 cites W2949202718 @default.
- W2999686948 cites W2963455674 @default.
- W2999686948 cites W2994602700 @default.
- W2999686948 cites W305498173 @default.
- W2999686948 cites W4235505822 @default.
- W2999686948 doi "https://doi.org/10.1109/icdmw.2019.00080" @default.
- W2999686948 hasPublicationYear "2019" @default.
- W2999686948 type Work @default.
- W2999686948 sameAs 2999686948 @default.
- W2999686948 citedByCount "5" @default.
- W2999686948 countsByYear W29996869482021 @default.
- W2999686948 countsByYear W29996869482022 @default.
- W2999686948 crossrefType "proceedings-article" @default.
- W2999686948 hasAuthorship W2999686948A5026022035 @default.
- W2999686948 hasAuthorship W2999686948A5062211930 @default.
- W2999686948 hasAuthorship W2999686948A5068981769 @default.
- W2999686948 hasConcept C124101348 @default.
- W2999686948 hasConcept C154945302 @default.
- W2999686948 hasConcept C169258074 @default.
- W2999686948 hasConcept C2522767166 @default.
- W2999686948 hasConcept C41008148 @default.
- W2999686948 hasConcept C75684735 @default.
- W2999686948 hasConcept C79158427 @default.
- W2999686948 hasConceptScore W2999686948C124101348 @default.
- W2999686948 hasConceptScore W2999686948C154945302 @default.
- W2999686948 hasConceptScore W2999686948C169258074 @default.
- W2999686948 hasConceptScore W2999686948C2522767166 @default.
- W2999686948 hasConceptScore W2999686948C41008148 @default.
- W2999686948 hasConceptScore W2999686948C75684735 @default.
- W2999686948 hasConceptScore W2999686948C79158427 @default.
- W2999686948 hasLocation W29996869481 @default.
- W2999686948 hasOpenAccess W2999686948 @default.
- W2999686948 hasPrimaryLocation W29996869481 @default.
- W2999686948 hasRelatedWork W2337265393 @default.
- W2999686948 hasRelatedWork W2739436898 @default.
- W2999686948 hasRelatedWork W2777139086 @default.
- W2999686948 hasRelatedWork W2790702400 @default.
- W2999686948 hasRelatedWork W2890270754 @default.
- W2999686948 hasRelatedWork W2998881927 @default.
- W2999686948 hasRelatedWork W3158624128 @default.
- W2999686948 hasRelatedWork W4245312229 @default.
- W2999686948 hasRelatedWork W2551093110 @default.
- W2999686948 hasRelatedWork W3121830558 @default.
- W2999686948 isParatext "false" @default.
- W2999686948 isRetracted "false" @default.
- W2999686948 magId "2999686948" @default.
- W2999686948 workType "article" @default.