Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999687942> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2999687942 endingPage "4" @default.
- W2999687942 startingPage "1" @default.
- W2999687942 abstract "In this article, a novel use of graphics processing units (GPUs) is presented for the acceleration of finite-element time-domain (FETD) methods containing electrically complex media. By leveraging the massively parallel architecture of the GPU via NVIDIA's Compute Unified Device Architecture (CUDA) language, the immense computational burden imposed by these materials can be largely alleviated, facilitating their modeling and incorporation into electromagnetic devices and systems. To that end, an analysis of both mixed and vector wave equation-based nonlinear dispersive FETD algorithms is presented in order to both identify computational bottlenecks and determine their amenability to parallelization. Based on this analysis, a parallel elemental matrix-evaluation procedure is proposed, which when coupled to the recently derived Gaussian belief propagation method for matrix assembly and solution, demonstrates a performance increase of up to 200 times as compared with a traditionally serial implementation." @default.
- W2999687942 created "2020-01-23" @default.
- W2999687942 creator A5045522577 @default.
- W2999687942 creator A5075286102 @default.
- W2999687942 date "2020-02-01" @default.
- W2999687942 modified "2023-10-15" @default.
- W2999687942 title "A Parallel Finite-Element Time-Domain Method for Nonlinear Dispersive Media" @default.
- W2999687942 cites W1965512225 @default.
- W2999687942 cites W1991014731 @default.
- W2999687942 cites W2086353208 @default.
- W2999687942 cites W2158501196 @default.
- W2999687942 cites W2171303908 @default.
- W2999687942 cites W2289615524 @default.
- W2999687942 cites W2559829409 @default.
- W2999687942 cites W2571600546 @default.
- W2999687942 cites W2897984065 @default.
- W2999687942 cites W2900827485 @default.
- W2999687942 cites W2982949486 @default.
- W2999687942 doi "https://doi.org/10.1109/tmag.2019.2952528" @default.
- W2999687942 hasPublicationYear "2020" @default.
- W2999687942 type Work @default.
- W2999687942 sameAs 2999687942 @default.
- W2999687942 citedByCount "6" @default.
- W2999687942 countsByYear W29996879422020 @default.
- W2999687942 countsByYear W29996879422022 @default.
- W2999687942 countsByYear W29996879422023 @default.
- W2999687942 crossrefType "journal-article" @default.
- W2999687942 hasAuthorship W2999687942A5045522577 @default.
- W2999687942 hasAuthorship W2999687942A5075286102 @default.
- W2999687942 hasBestOaLocation W29996879422 @default.
- W2999687942 hasConcept C106487976 @default.
- W2999687942 hasConcept C117896860 @default.
- W2999687942 hasConcept C121332964 @default.
- W2999687942 hasConcept C121684516 @default.
- W2999687942 hasConcept C126312332 @default.
- W2999687942 hasConcept C135628077 @default.
- W2999687942 hasConcept C158622935 @default.
- W2999687942 hasConcept C159985019 @default.
- W2999687942 hasConcept C163716315 @default.
- W2999687942 hasConcept C173608175 @default.
- W2999687942 hasConcept C190475519 @default.
- W2999687942 hasConcept C192562407 @default.
- W2999687942 hasConcept C206844423 @default.
- W2999687942 hasConcept C21442007 @default.
- W2999687942 hasConcept C2778119891 @default.
- W2999687942 hasConcept C2779851693 @default.
- W2999687942 hasConcept C28843909 @default.
- W2999687942 hasConcept C41008148 @default.
- W2999687942 hasConcept C459310 @default.
- W2999687942 hasConcept C62520636 @default.
- W2999687942 hasConcept C74650414 @default.
- W2999687942 hasConcept C97355855 @default.
- W2999687942 hasConceptScore W2999687942C106487976 @default.
- W2999687942 hasConceptScore W2999687942C117896860 @default.
- W2999687942 hasConceptScore W2999687942C121332964 @default.
- W2999687942 hasConceptScore W2999687942C121684516 @default.
- W2999687942 hasConceptScore W2999687942C126312332 @default.
- W2999687942 hasConceptScore W2999687942C135628077 @default.
- W2999687942 hasConceptScore W2999687942C158622935 @default.
- W2999687942 hasConceptScore W2999687942C159985019 @default.
- W2999687942 hasConceptScore W2999687942C163716315 @default.
- W2999687942 hasConceptScore W2999687942C173608175 @default.
- W2999687942 hasConceptScore W2999687942C190475519 @default.
- W2999687942 hasConceptScore W2999687942C192562407 @default.
- W2999687942 hasConceptScore W2999687942C206844423 @default.
- W2999687942 hasConceptScore W2999687942C21442007 @default.
- W2999687942 hasConceptScore W2999687942C2778119891 @default.
- W2999687942 hasConceptScore W2999687942C2779851693 @default.
- W2999687942 hasConceptScore W2999687942C28843909 @default.
- W2999687942 hasConceptScore W2999687942C41008148 @default.
- W2999687942 hasConceptScore W2999687942C459310 @default.
- W2999687942 hasConceptScore W2999687942C62520636 @default.
- W2999687942 hasConceptScore W2999687942C74650414 @default.
- W2999687942 hasConceptScore W2999687942C97355855 @default.
- W2999687942 hasFunder F4320334593 @default.
- W2999687942 hasIssue "2" @default.
- W2999687942 hasLocation W29996879421 @default.
- W2999687942 hasLocation W29996879422 @default.
- W2999687942 hasOpenAccess W2999687942 @default.
- W2999687942 hasPrimaryLocation W29996879421 @default.
- W2999687942 hasRelatedWork W1966576946 @default.
- W2999687942 hasRelatedWork W2023770367 @default.
- W2999687942 hasRelatedWork W2030707850 @default.
- W2999687942 hasRelatedWork W2062253548 @default.
- W2999687942 hasRelatedWork W2119534391 @default.
- W2999687942 hasRelatedWork W2146871484 @default.
- W2999687942 hasRelatedWork W2393490604 @default.
- W2999687942 hasRelatedWork W2393707426 @default.
- W2999687942 hasRelatedWork W2503137108 @default.
- W2999687942 hasRelatedWork W2794923745 @default.
- W2999687942 hasVolume "56" @default.
- W2999687942 isParatext "false" @default.
- W2999687942 isRetracted "false" @default.
- W2999687942 magId "2999687942" @default.
- W2999687942 workType "article" @default.