Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999690504> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2999690504 abstract "To better understand and investigate Kontsevich-Zagier conjecture on abstract periods, we consider the case of algebraic Riemann Surfaces representable by Belyi maps. The category of morphisms of Belyi ramified maps and Dessins D'Enfant, will be investigated in search of an analog for periods, of the Ramification Theory for decomposition of primes in field extensions, controlled by theirs respective algebraic Galois groups. This suggests a relation between the theory of (cohomological, Betti-de Rham) periods and Grothendieck's Anabelian Geometry (homotopical/ local systems), towards perhaps an algebraic analog of Hurwitz Theorem, relating the the algebraic de Rham cohomology and algebraic fundamental group, both pioneered by A. Grothendieck. There seem to be good prospects of better understanding the role of absolute Galois group in the physics context of scattering amplitudes and Multiple Zeta Values, with their incarnation as Chen integrals on moduli spaces, as studied by Francis Brown, since the latter are a homotopical analog of de Rham Theory. The research will be placed in the larger context of the ADE-correspondence, since, for example, orbifolds of finite groups of rotations have crepant resolutions relevant in String Theory, while via Cartan-Killing Theory and exceptional Lie algebras, they relate to TOEs. Relations with the author's reformulation of cohomology of cyclic groups as a discrete analog of de Rham cohomology and the Arithmetic Galois Theory will provide a purely algebraic toy-model of the said algebraic homology/homotopy group theory of Grothendieck as part of Anabelian Geometry. It will allow an elementary investigation of the main concepts defining periods and algebraic fundamental group, together with their conceptual relation to algebraic numbers and Galois groups. The Riemann surfaces with Platonic tessellations, especially the Hurwitz surfaces, are related to the finite Hopf sub-bundles with symmetries the ``exceptional'' Galois groups. The corresponding Platonic Trinity leads to connections with ADE-correspondence, and beyond, e.g. TOEs and ADEX-Theory. Quantizing everything (cyclotomic quantum phase and finite Platonic-Hurwitz geometry of qubits/baryons) could perhaps be The Eightfold (Petrie polygon) Way to finally understand what quark flavors and fermion generations really are." @default.
- W2999690504 created "2020-01-23" @default.
- W2999690504 creator A5067468088 @default.
- W2999690504 date "2019-12-01" @default.
- W2999690504 modified "2023-10-16" @default.
- W2999690504 title "From Periods to Anabelian Geometry and Quantum Amplitudes" @default.
- W2999690504 hasPublicationYear "2019" @default.
- W2999690504 type Work @default.
- W2999690504 sameAs 2999690504 @default.
- W2999690504 citedByCount "0" @default.
- W2999690504 crossrefType "posted-content" @default.
- W2999690504 hasAuthorship W2999690504A5067468088 @default.
- W2999690504 hasConcept C136119220 @default.
- W2999690504 hasConcept C137212723 @default.
- W2999690504 hasConcept C145899342 @default.
- W2999690504 hasConcept C155751095 @default.
- W2999690504 hasConcept C182349385 @default.
- W2999690504 hasConcept C202444582 @default.
- W2999690504 hasConcept C202833876 @default.
- W2999690504 hasConcept C2780435672 @default.
- W2999690504 hasConcept C33923547 @default.
- W2999690504 hasConcept C45442697 @default.
- W2999690504 hasConcept C67536143 @default.
- W2999690504 hasConcept C68365058 @default.
- W2999690504 hasConcept C72738302 @default.
- W2999690504 hasConcept C78606066 @default.
- W2999690504 hasConcept C84254916 @default.
- W2999690504 hasConceptScore W2999690504C136119220 @default.
- W2999690504 hasConceptScore W2999690504C137212723 @default.
- W2999690504 hasConceptScore W2999690504C145899342 @default.
- W2999690504 hasConceptScore W2999690504C155751095 @default.
- W2999690504 hasConceptScore W2999690504C182349385 @default.
- W2999690504 hasConceptScore W2999690504C202444582 @default.
- W2999690504 hasConceptScore W2999690504C202833876 @default.
- W2999690504 hasConceptScore W2999690504C2780435672 @default.
- W2999690504 hasConceptScore W2999690504C33923547 @default.
- W2999690504 hasConceptScore W2999690504C45442697 @default.
- W2999690504 hasConceptScore W2999690504C67536143 @default.
- W2999690504 hasConceptScore W2999690504C68365058 @default.
- W2999690504 hasConceptScore W2999690504C72738302 @default.
- W2999690504 hasConceptScore W2999690504C78606066 @default.
- W2999690504 hasConceptScore W2999690504C84254916 @default.
- W2999690504 hasLocation W29996905041 @default.
- W2999690504 hasOpenAccess W2999690504 @default.
- W2999690504 hasPrimaryLocation W29996905041 @default.
- W2999690504 hasRelatedWork W144228326 @default.
- W2999690504 hasRelatedWork W147699375 @default.
- W2999690504 hasRelatedWork W1564942648 @default.
- W2999690504 hasRelatedWork W1660861555 @default.
- W2999690504 hasRelatedWork W1975274817 @default.
- W2999690504 hasRelatedWork W1985994641 @default.
- W2999690504 hasRelatedWork W2001682807 @default.
- W2999690504 hasRelatedWork W2284012022 @default.
- W2999690504 hasRelatedWork W2400663792 @default.
- W2999690504 hasRelatedWork W2423213781 @default.
- W2999690504 hasRelatedWork W2519882787 @default.
- W2999690504 hasRelatedWork W2765402826 @default.
- W2999690504 hasRelatedWork W2951232184 @default.
- W2999690504 hasRelatedWork W2963828271 @default.
- W2999690504 hasRelatedWork W2980495796 @default.
- W2999690504 hasRelatedWork W3113351980 @default.
- W2999690504 hasRelatedWork W3135074059 @default.
- W2999690504 hasRelatedWork W3151614257 @default.
- W2999690504 hasRelatedWork W70264959 @default.
- W2999690504 hasRelatedWork W2109239109 @default.
- W2999690504 isParatext "false" @default.
- W2999690504 isRetracted "false" @default.
- W2999690504 magId "2999690504" @default.
- W2999690504 workType "article" @default.