Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999694851> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2999694851 abstract "Research on heart diseases has always been the center of attention of the world health organization. More than 17.9 million people died from it in 2016, which represent 31% of the overall deaths globally. Machine learning techniques have been used extensively in that area to assist physicians to develop a firm opinion about the conditions of their heart disease patients. Some of the existing machine learning models still suffers from limited predication ability, and the chosen analysis approaches are not suitable. As well, it was noticed that the existing approaches pay more attention to building high accuracy models, while overlooking the ability to interpret and understand the recommendations of these models. In this research, different renowned machine learning techniques: Artificial Neural Networks, Support Vector Machines, Naïve Bayes, Decision Trees and Random Forests have been investigated to help in building, understanding and interpreting different heart disease diagnosing models. The Artificial Neural Networks model showed the best accuracy of 84.25% compared to the other models. In addition, it was found that despite some designed models have higher accuracies than others, it may be safer to choose a lower accuracy model as a final design of this study. This sacrifice was essential to make sure that a more transparent and trusted model is being used in the heart disease diagnosis process. This transparency validation was conducted using a newly suggested metric: the Feature Ranking Cost index. The use of that index showed promising results by making it clear as which machine learning model has a balance between accuracy and transparency. It is expected that following the detailed analyses and the use of this research findings will be useful to the machine learning community as it could be the basis for post-hoc prediction model interpretation of different clinical data sets." @default.
- W2999694851 created "2020-01-23" @default.
- W2999694851 creator A5043464152 @default.
- W2999694851 date "2019-01-01" @default.
- W2999694851 modified "2023-10-18" @default.
- W2999694851 title "Cardiovascular Disease Diagnosis: A Machine Learning Interpretation Approach" @default.
- W2999694851 cites W1492583703 @default.
- W2999694851 cites W1569512666 @default.
- W2999694851 cites W1985691099 @default.
- W2999694851 cites W1989164753 @default.
- W2999694851 cites W2568988948 @default.
- W2999694851 cites W2757234378 @default.
- W2999694851 cites W2790718901 @default.
- W2999694851 cites W2874411262 @default.
- W2999694851 cites W2884211983 @default.
- W2999694851 cites W2892846966 @default.
- W2999694851 cites W2911183123 @default.
- W2999694851 cites W2918610883 @default.
- W2999694851 cites W2941699411 @default.
- W2999694851 cites W2943403675 @default.
- W2999694851 cites W2943511409 @default.
- W2999694851 cites W878798983 @default.
- W2999694851 doi "https://doi.org/10.14569/ijacsa.2019.0101236" @default.
- W2999694851 hasPublicationYear "2019" @default.
- W2999694851 type Work @default.
- W2999694851 sameAs 2999694851 @default.
- W2999694851 citedByCount "11" @default.
- W2999694851 countsByYear W29996948512021 @default.
- W2999694851 countsByYear W29996948512022 @default.
- W2999694851 countsByYear W29996948512023 @default.
- W2999694851 crossrefType "journal-article" @default.
- W2999694851 hasAuthorship W2999694851A5043464152 @default.
- W2999694851 hasBestOaLocation W29996948511 @default.
- W2999694851 hasConcept C119857082 @default.
- W2999694851 hasConcept C12267149 @default.
- W2999694851 hasConcept C154945302 @default.
- W2999694851 hasConcept C162324750 @default.
- W2999694851 hasConcept C164705383 @default.
- W2999694851 hasConcept C169258074 @default.
- W2999694851 hasConcept C176217482 @default.
- W2999694851 hasConcept C189430467 @default.
- W2999694851 hasConcept C21547014 @default.
- W2999694851 hasConcept C2776654903 @default.
- W2999694851 hasConcept C2780074459 @default.
- W2999694851 hasConcept C2780233690 @default.
- W2999694851 hasConcept C38652104 @default.
- W2999694851 hasConcept C41008148 @default.
- W2999694851 hasConcept C50644808 @default.
- W2999694851 hasConcept C71924100 @default.
- W2999694851 hasConcept C84525736 @default.
- W2999694851 hasConceptScore W2999694851C119857082 @default.
- W2999694851 hasConceptScore W2999694851C12267149 @default.
- W2999694851 hasConceptScore W2999694851C154945302 @default.
- W2999694851 hasConceptScore W2999694851C162324750 @default.
- W2999694851 hasConceptScore W2999694851C164705383 @default.
- W2999694851 hasConceptScore W2999694851C169258074 @default.
- W2999694851 hasConceptScore W2999694851C176217482 @default.
- W2999694851 hasConceptScore W2999694851C189430467 @default.
- W2999694851 hasConceptScore W2999694851C21547014 @default.
- W2999694851 hasConceptScore W2999694851C2776654903 @default.
- W2999694851 hasConceptScore W2999694851C2780074459 @default.
- W2999694851 hasConceptScore W2999694851C2780233690 @default.
- W2999694851 hasConceptScore W2999694851C38652104 @default.
- W2999694851 hasConceptScore W2999694851C41008148 @default.
- W2999694851 hasConceptScore W2999694851C50644808 @default.
- W2999694851 hasConceptScore W2999694851C71924100 @default.
- W2999694851 hasConceptScore W2999694851C84525736 @default.
- W2999694851 hasIssue "12" @default.
- W2999694851 hasLocation W29996948511 @default.
- W2999694851 hasOpenAccess W2999694851 @default.
- W2999694851 hasPrimaryLocation W29996948511 @default.
- W2999694851 hasRelatedWork W3127425528 @default.
- W2999694851 hasRelatedWork W3137393605 @default.
- W2999694851 hasRelatedWork W3143658565 @default.
- W2999694851 hasRelatedWork W3204512408 @default.
- W2999694851 hasRelatedWork W3204641204 @default.
- W2999694851 hasRelatedWork W4246246790 @default.
- W2999694851 hasRelatedWork W4313195551 @default.
- W2999694851 hasRelatedWork W4313526343 @default.
- W2999694851 hasRelatedWork W4321636153 @default.
- W2999694851 hasRelatedWork W4381414210 @default.
- W2999694851 hasVolume "10" @default.
- W2999694851 isParatext "false" @default.
- W2999694851 isRetracted "false" @default.
- W2999694851 magId "2999694851" @default.
- W2999694851 workType "article" @default.