Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999697944> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2999697944 endingPage "101719" @default.
- W2999697944 startingPage "101719" @default.
- W2999697944 abstract "Abstract Advanced botnet threats are natively deploying concealing techniques to prevent detection and sinkholing. To tackle them, machine learning solutions have become a standard approach, especially when dealing with Algorithmically Generated Domain (AGD) names. Nevertheless, machine learning state-of-the-art is non-specialist at best, having multiple issues in terms of rigorousness, reproducibility and ultimately credibility. This research focuses on the first critical step of the training phase, that is, the collection of data suitable for being analysed by algorithms. We have detected a common lack of scientific rigorousness in the literature regarding the aforementioned AGD analysis and, therefore, we advocate two major contributions in this article: i) a thorough analysis of the cyber panorama in terms of botnets that make use of Domain Generation Algorithms (DGAs) as evasive techniques, that flows into ii) a full-fledged machine-learning-ready labelled dataset that features over 30 million AGDs sorted in 50 malware variant classes. This mature dataset aims to fill the gap in the comparability between the different researches published in the literature. Lastly, two minor contributions are also included in this article: iii) we designed an exploratory analysis of the proposed dataset to provide both data characteristics and potential future research lines, which eventually emerges as iv) a collection of suggested guidelines. When proposing a machine learning solution, researchers should adhere to it in order to achieve scientific rigorousness." @default.
- W2999697944 created "2020-01-23" @default.
- W2999697944 creator A5033414840 @default.
- W2999697944 creator A5043137792 @default.
- W2999697944 creator A5059796926 @default.
- W2999697944 date "2020-05-01" @default.
- W2999697944 modified "2023-10-02" @default.
- W2999697944 title "UMUDGA: A dataset for profiling DGA-based botnet" @default.
- W2999697944 cites W2026621111 @default.
- W2999697944 cites W2031163547 @default.
- W2999697944 cites W2077488147 @default.
- W2999697944 cites W2752533296 @default.
- W2999697944 cites W2755635976 @default.
- W2999697944 cites W2792815878 @default.
- W2999697944 cites W2806822872 @default.
- W2999697944 cites W2929803724 @default.
- W2999697944 cites W2972689670 @default.
- W2999697944 cites W2979462950 @default.
- W2999697944 doi "https://doi.org/10.1016/j.cose.2020.101719" @default.
- W2999697944 hasPublicationYear "2020" @default.
- W2999697944 type Work @default.
- W2999697944 sameAs 2999697944 @default.
- W2999697944 citedByCount "29" @default.
- W2999697944 countsByYear W29996979442020 @default.
- W2999697944 countsByYear W29996979442021 @default.
- W2999697944 countsByYear W29996979442022 @default.
- W2999697944 countsByYear W29996979442023 @default.
- W2999697944 crossrefType "journal-article" @default.
- W2999697944 hasAuthorship W2999697944A5033414840 @default.
- W2999697944 hasAuthorship W2999697944A5043137792 @default.
- W2999697944 hasAuthorship W2999697944A5059796926 @default.
- W2999697944 hasConcept C110875604 @default.
- W2999697944 hasConcept C111919701 @default.
- W2999697944 hasConcept C124101348 @default.
- W2999697944 hasConcept C136764020 @default.
- W2999697944 hasConcept C187191949 @default.
- W2999697944 hasConcept C22735295 @default.
- W2999697944 hasConcept C2522767166 @default.
- W2999697944 hasConcept C41008148 @default.
- W2999697944 hasConcept C70721500 @default.
- W2999697944 hasConcept C86803240 @default.
- W2999697944 hasConceptScore W2999697944C110875604 @default.
- W2999697944 hasConceptScore W2999697944C111919701 @default.
- W2999697944 hasConceptScore W2999697944C124101348 @default.
- W2999697944 hasConceptScore W2999697944C136764020 @default.
- W2999697944 hasConceptScore W2999697944C187191949 @default.
- W2999697944 hasConceptScore W2999697944C22735295 @default.
- W2999697944 hasConceptScore W2999697944C2522767166 @default.
- W2999697944 hasConceptScore W2999697944C41008148 @default.
- W2999697944 hasConceptScore W2999697944C70721500 @default.
- W2999697944 hasConceptScore W2999697944C86803240 @default.
- W2999697944 hasLocation W29996979441 @default.
- W2999697944 hasOpenAccess W2999697944 @default.
- W2999697944 hasPrimaryLocation W29996979441 @default.
- W2999697944 hasRelatedWork W1602801198 @default.
- W2999697944 hasRelatedWork W1607090722 @default.
- W2999697944 hasRelatedWork W2145546708 @default.
- W2999697944 hasRelatedWork W2167571567 @default.
- W2999697944 hasRelatedWork W2348361596 @default.
- W2999697944 hasRelatedWork W2350287655 @default.
- W2999697944 hasRelatedWork W2792115777 @default.
- W2999697944 hasRelatedWork W2947857949 @default.
- W2999697944 hasRelatedWork W3018118667 @default.
- W2999697944 hasRelatedWork W2521117258 @default.
- W2999697944 hasVolume "92" @default.
- W2999697944 isParatext "false" @default.
- W2999697944 isRetracted "false" @default.
- W2999697944 magId "2999697944" @default.
- W2999697944 workType "article" @default.