Matches in SemOpenAlex for { <https://semopenalex.org/work/W2999842914> ?p ?o ?g. }
- W2999842914 endingPage "1249" @default.
- W2999842914 startingPage "1239" @default.
- W2999842914 abstract "In this paper, we introduce a deep learning aided constraint encoding method to tackle the frequency-constraint microgrid scheduling problem. The nonlinear function between system operating condition and frequency nadir is approximated by using a neural network, which admits an exact mixed-integer formulation (MIP). This formulation is then integrated with the scheduling problem to encode the frequency constraint. With the stronger representation power of the neural network, the resulting commands can ensure adequate frequency response in a realistic setting in addition to islanding success. The proposed method is validated on a modified 33-node system. Successful islanding with a secure response is simulated under the scheduled commands using a detailed three-phase model in Simulink. The advantages of our model are particularly remarkable when the inertia emulation functions from wind turbine generators are considered." @default.
- W2999842914 created "2020-01-23" @default.
- W2999842914 creator A5015199708 @default.
- W2999842914 creator A5025590624 @default.
- W2999842914 creator A5063253432 @default.
- W2999842914 creator A5075975692 @default.
- W2999842914 creator A5087181267 @default.
- W2999842914 date "2021-03-01" @default.
- W2999842914 modified "2023-10-17" @default.
- W2999842914 title "Approximating Trajectory Constraints With Machine Learning – Microgrid Islanding With Frequency Constraints" @default.
- W2999842914 cites W1969323923 @default.
- W2999842914 cites W2001860597 @default.
- W2999842914 cites W2003612044 @default.
- W2999842914 cites W2024602078 @default.
- W2999842914 cites W2055851902 @default.
- W2999842914 cites W2092743316 @default.
- W2999842914 cites W2105653794 @default.
- W2999842914 cites W2110787312 @default.
- W2999842914 cites W2154029134 @default.
- W2999842914 cites W2162493407 @default.
- W2999842914 cites W2176896246 @default.
- W2999842914 cites W2290410061 @default.
- W2999842914 cites W2343945628 @default.
- W2999842914 cites W2344264352 @default.
- W2999842914 cites W2570440071 @default.
- W2999842914 cites W2573530380 @default.
- W2999842914 cites W2606265869 @default.
- W2999842914 cites W2620007478 @default.
- W2999842914 cites W2735064727 @default.
- W2999842914 cites W2741534749 @default.
- W2999842914 cites W2747471785 @default.
- W2999842914 cites W2766539547 @default.
- W2999842914 cites W2800326108 @default.
- W2999842914 cites W2800962409 @default.
- W2999842914 cites W2802839291 @default.
- W2999842914 cites W2809644838 @default.
- W2999842914 cites W2945468626 @default.
- W2999842914 cites W2952326029 @default.
- W2999842914 cites W2962904428 @default.
- W2999842914 cites W2963423103 @default.
- W2999842914 cites W2987775637 @default.
- W2999842914 cites W2994517795 @default.
- W2999842914 cites W3022023007 @default.
- W2999842914 cites W3100420717 @default.
- W2999842914 cites W3102224042 @default.
- W2999842914 cites W4239811576 @default.
- W2999842914 cites W4241079583 @default.
- W2999842914 cites W4293177929 @default.
- W2999842914 doi "https://doi.org/10.1109/tpwrs.2020.3015913" @default.
- W2999842914 hasPublicationYear "2021" @default.
- W2999842914 type Work @default.
- W2999842914 sameAs 2999842914 @default.
- W2999842914 citedByCount "21" @default.
- W2999842914 countsByYear W29998429142021 @default.
- W2999842914 countsByYear W29998429142022 @default.
- W2999842914 countsByYear W29998429142023 @default.
- W2999842914 crossrefType "journal-article" @default.
- W2999842914 hasAuthorship W2999842914A5015199708 @default.
- W2999842914 hasAuthorship W2999842914A5025590624 @default.
- W2999842914 hasAuthorship W2999842914A5063253432 @default.
- W2999842914 hasAuthorship W2999842914A5075975692 @default.
- W2999842914 hasAuthorship W2999842914A5087181267 @default.
- W2999842914 hasBestOaLocation W29998429141 @default.
- W2999842914 hasConcept C119599485 @default.
- W2999842914 hasConcept C121332964 @default.
- W2999842914 hasConcept C126255220 @default.
- W2999842914 hasConcept C127413603 @default.
- W2999842914 hasConcept C1276947 @default.
- W2999842914 hasConcept C13662910 @default.
- W2999842914 hasConcept C149810388 @default.
- W2999842914 hasConcept C154945302 @default.
- W2999842914 hasConcept C162324750 @default.
- W2999842914 hasConcept C163258240 @default.
- W2999842914 hasConcept C176605952 @default.
- W2999842914 hasConcept C206729178 @default.
- W2999842914 hasConcept C25915539 @default.
- W2999842914 hasConcept C2775924081 @default.
- W2999842914 hasConcept C2776784348 @default.
- W2999842914 hasConcept C2778675665 @default.
- W2999842914 hasConcept C33923547 @default.
- W2999842914 hasConcept C41008148 @default.
- W2999842914 hasConcept C47446073 @default.
- W2999842914 hasConcept C50522688 @default.
- W2999842914 hasConcept C50644808 @default.
- W2999842914 hasConcept C62520636 @default.
- W2999842914 hasConcept C76155785 @default.
- W2999842914 hasConcept C8590192 @default.
- W2999842914 hasConcept C89227174 @default.
- W2999842914 hasConceptScore W2999842914C119599485 @default.
- W2999842914 hasConceptScore W2999842914C121332964 @default.
- W2999842914 hasConceptScore W2999842914C126255220 @default.
- W2999842914 hasConceptScore W2999842914C127413603 @default.
- W2999842914 hasConceptScore W2999842914C1276947 @default.
- W2999842914 hasConceptScore W2999842914C13662910 @default.
- W2999842914 hasConceptScore W2999842914C149810388 @default.
- W2999842914 hasConceptScore W2999842914C154945302 @default.
- W2999842914 hasConceptScore W2999842914C162324750 @default.
- W2999842914 hasConceptScore W2999842914C163258240 @default.