Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000025935> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3000025935 endingPage "359" @default.
- W3000025935 startingPage "347" @default.
- W3000025935 abstract "Reducing the number of users serviced by congested cellular towers given an offered load and a minimum level of acceptable user quality is a major challenge in the operation of LTE networks. In this paper, we utilize a supervised Deep Learning (DL) technique to predict the LTE and LTE-A loading of connected users and then dynamically predict the congestion threshold of each cellular tower under offered load. We then use the predicted congestion thresholds together with quality constraints to fine-tune cellular network operating parameters leading to minimizing overall network congestion. We propose two sets of optimization algorithms to solve our formulated congestion optimization problem. Those are, namely, a variant of Simulated Annealing (SA) algorithm to which we refer as Block Coordinated Descent Simulated Annealing (BCDSA) and Genetic Algorithm (GA). We first compare the performance of integrated DL-BCDSA and DL-GA algorithms and then show that our integrated DL-BCDSA can outperform existing state-of-the-art commercial self organizing tool already deployed in actual cellular networks." @default.
- W3000025935 created "2020-01-23" @default.
- W3000025935 creator A5001398498 @default.
- W3000025935 creator A5033819787 @default.
- W3000025935 date "2020-02-01" @default.
- W3000025935 modified "2023-09-27" @default.
- W3000025935 title "Congestion Minimization of LTE Networks: A Deep Learning Approach" @default.
- W3000025935 cites W1540764732 @default.
- W3000025935 cites W1557764847 @default.
- W3000025935 cites W1994527485 @default.
- W3000025935 cites W2004750113 @default.
- W3000025935 cites W2023901033 @default.
- W3000025935 cites W2048302985 @default.
- W3000025935 cites W2083957720 @default.
- W3000025935 cites W2087070363 @default.
- W3000025935 cites W2096160521 @default.
- W3000025935 cites W2097217617 @default.
- W3000025935 cites W2109788599 @default.
- W3000025935 cites W2122520256 @default.
- W3000025935 cites W2122928062 @default.
- W3000025935 cites W2123442580 @default.
- W3000025935 cites W2130475973 @default.
- W3000025935 cites W2136519475 @default.
- W3000025935 cites W2293876974 @default.
- W3000025935 cites W2963541115 @default.
- W3000025935 cites W4206271555 @default.
- W3000025935 cites W4235252523 @default.
- W3000025935 cites W4293263215 @default.
- W3000025935 doi "https://doi.org/10.1109/tnet.2019.2960266" @default.
- W3000025935 hasPublicationYear "2020" @default.
- W3000025935 type Work @default.
- W3000025935 sameAs 3000025935 @default.
- W3000025935 citedByCount "9" @default.
- W3000025935 countsByYear W30000259352021 @default.
- W3000025935 countsByYear W30000259352022 @default.
- W3000025935 countsByYear W30000259352023 @default.
- W3000025935 crossrefType "journal-article" @default.
- W3000025935 hasAuthorship W3000025935A5001398498 @default.
- W3000025935 hasAuthorship W3000025935A5033819787 @default.
- W3000025935 hasConcept C11413529 @default.
- W3000025935 hasConcept C119857082 @default.
- W3000025935 hasConcept C126255220 @default.
- W3000025935 hasConcept C126980161 @default.
- W3000025935 hasConcept C147764199 @default.
- W3000025935 hasConcept C153258448 @default.
- W3000025935 hasConcept C153646914 @default.
- W3000025935 hasConcept C154945302 @default.
- W3000025935 hasConcept C158379750 @default.
- W3000025935 hasConcept C195563490 @default.
- W3000025935 hasConcept C199360897 @default.
- W3000025935 hasConcept C2524010 @default.
- W3000025935 hasConcept C2777210771 @default.
- W3000025935 hasConcept C31258907 @default.
- W3000025935 hasConcept C33923547 @default.
- W3000025935 hasConcept C41008148 @default.
- W3000025935 hasConcept C50644808 @default.
- W3000025935 hasConcept C8880873 @default.
- W3000025935 hasConceptScore W3000025935C11413529 @default.
- W3000025935 hasConceptScore W3000025935C119857082 @default.
- W3000025935 hasConceptScore W3000025935C126255220 @default.
- W3000025935 hasConceptScore W3000025935C126980161 @default.
- W3000025935 hasConceptScore W3000025935C147764199 @default.
- W3000025935 hasConceptScore W3000025935C153258448 @default.
- W3000025935 hasConceptScore W3000025935C153646914 @default.
- W3000025935 hasConceptScore W3000025935C154945302 @default.
- W3000025935 hasConceptScore W3000025935C158379750 @default.
- W3000025935 hasConceptScore W3000025935C195563490 @default.
- W3000025935 hasConceptScore W3000025935C199360897 @default.
- W3000025935 hasConceptScore W3000025935C2524010 @default.
- W3000025935 hasConceptScore W3000025935C2777210771 @default.
- W3000025935 hasConceptScore W3000025935C31258907 @default.
- W3000025935 hasConceptScore W3000025935C33923547 @default.
- W3000025935 hasConceptScore W3000025935C41008148 @default.
- W3000025935 hasConceptScore W3000025935C50644808 @default.
- W3000025935 hasConceptScore W3000025935C8880873 @default.
- W3000025935 hasIssue "1" @default.
- W3000025935 hasLocation W30000259351 @default.
- W3000025935 hasOpenAccess W3000025935 @default.
- W3000025935 hasPrimaryLocation W30000259351 @default.
- W3000025935 hasRelatedWork W2001455358 @default.
- W3000025935 hasRelatedWork W2050922615 @default.
- W3000025935 hasRelatedWork W2140869109 @default.
- W3000025935 hasRelatedWork W2171988962 @default.
- W3000025935 hasRelatedWork W2360177438 @default.
- W3000025935 hasRelatedWork W2389607501 @default.
- W3000025935 hasRelatedWork W2963511616 @default.
- W3000025935 hasRelatedWork W3038147829 @default.
- W3000025935 hasRelatedWork W4327850430 @default.
- W3000025935 hasRelatedWork W639208967 @default.
- W3000025935 hasVolume "28" @default.
- W3000025935 isParatext "false" @default.
- W3000025935 isRetracted "false" @default.
- W3000025935 magId "3000025935" @default.
- W3000025935 workType "article" @default.