Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000032064> ?p ?o ?g. }
- W3000032064 endingPage "332" @default.
- W3000032064 startingPage "320" @default.
- W3000032064 abstract "The bottleneck of Distributed Machine Learning (DML) has shifted from computation to communication. Lots of works have focused on speeding up communication phase from perspective of Parameter Server (PS) architecture, for example resource scheduling. Nonetheless, the performance improvement of these schemes is limited due to the agnostic of the physical topology to the communication pattern of the applications. Concurrently, some articles have also pointed out the impact of topology on DML performance. Besides, our analysis and experimental results also indicate that the general topologies cannot match well with the communication characteristics of DML based on PS architecture. However, to the best of our knowledge, no special topology is tailored for DML. Therefore, in this paper, we propose PSNet, a reconfigurable modular network topology for DML with consideration of the communication characteristics of PS architecture. The main idea of PSNet is that servers are firstly divided into two categories, namely workers configured with high-performance computing capability and parameter servers equipped with multiple Network Interface Cards (NICs). Then Electrical Circuit Switch (ECS) is exploited to connect workers and Top of Rack (ToR) switches for flexibility and reconfigurability in each module. Our theoretical analysis proves that PSNet not only provides high performance for DML tasks, but also achieves high fault tolerance and flexibility. In order to validate the performance of PSNet, we conduct large-scale simulations and small-scale testbed experiments, and the results of experiments demonstrate that PSNet performs 1.89× and 1.92× faster than FatTree for VGG-16 and ResNet50, respectively." @default.
- W3000032064 created "2020-01-23" @default.
- W3000032064 creator A5016039620 @default.
- W3000032064 creator A5017360203 @default.
- W3000032064 creator A5053945147 @default.
- W3000032064 creator A5058380236 @default.
- W3000032064 creator A5075454046 @default.
- W3000032064 creator A5081194577 @default.
- W3000032064 date "2020-05-01" @default.
- W3000032064 modified "2023-09-25" @default.
- W3000032064 title "PSNet: Reconfigurable network topology design for accelerating parameter server architecture based distributed machine learning" @default.
- W3000032064 cites W1988150362 @default.
- W3000032064 cites W2017036528 @default.
- W3000032064 cites W2057332538 @default.
- W3000032064 cites W2131613942 @default.
- W3000032064 cites W2139573800 @default.
- W3000032064 cites W2143065961 @default.
- W3000032064 cites W2147768505 @default.
- W3000032064 cites W2155893237 @default.
- W3000032064 cites W2268702383 @default.
- W3000032064 cites W2412782625 @default.
- W3000032064 cites W2523435939 @default.
- W3000032064 cites W2579247884 @default.
- W3000032064 cites W2589642470 @default.
- W3000032064 cites W2618099328 @default.
- W3000032064 cites W2742956305 @default.
- W3000032064 cites W2743429249 @default.
- W3000032064 cites W2771722572 @default.
- W3000032064 cites W2807778630 @default.
- W3000032064 cites W2819181356 @default.
- W3000032064 cites W2884001105 @default.
- W3000032064 cites W2887843314 @default.
- W3000032064 cites W2889809831 @default.
- W3000032064 cites W2892214318 @default.
- W3000032064 cites W2899009846 @default.
- W3000032064 cites W2906007643 @default.
- W3000032064 cites W2950324457 @default.
- W3000032064 cites W2952553488 @default.
- W3000032064 cites W2962684017 @default.
- W3000032064 cites W2963036378 @default.
- W3000032064 cites W2963390885 @default.
- W3000032064 cites W2969836206 @default.
- W3000032064 cites W3006030140 @default.
- W3000032064 cites W3081772395 @default.
- W3000032064 cites W4231891315 @default.
- W3000032064 cites W4235670058 @default.
- W3000032064 cites W4245826835 @default.
- W3000032064 cites W4251897646 @default.
- W3000032064 cites W4289401659 @default.
- W3000032064 doi "https://doi.org/10.1016/j.future.2020.01.004" @default.
- W3000032064 hasPublicationYear "2020" @default.
- W3000032064 type Work @default.
- W3000032064 sameAs 3000032064 @default.
- W3000032064 citedByCount "7" @default.
- W3000032064 countsByYear W30000320642020 @default.
- W3000032064 countsByYear W30000320642021 @default.
- W3000032064 countsByYear W30000320642022 @default.
- W3000032064 countsByYear W30000320642023 @default.
- W3000032064 crossrefType "journal-article" @default.
- W3000032064 hasAuthorship W3000032064A5016039620 @default.
- W3000032064 hasAuthorship W3000032064A5017360203 @default.
- W3000032064 hasAuthorship W3000032064A5053945147 @default.
- W3000032064 hasAuthorship W3000032064A5058380236 @default.
- W3000032064 hasAuthorship W3000032064A5075454046 @default.
- W3000032064 hasAuthorship W3000032064A5081194577 @default.
- W3000032064 hasConcept C101468663 @default.
- W3000032064 hasConcept C111919701 @default.
- W3000032064 hasConcept C114614502 @default.
- W3000032064 hasConcept C117729477 @default.
- W3000032064 hasConcept C118524514 @default.
- W3000032064 hasConcept C120314980 @default.
- W3000032064 hasConcept C149635348 @default.
- W3000032064 hasConcept C184720557 @default.
- W3000032064 hasConcept C199845137 @default.
- W3000032064 hasConcept C2780149590 @default.
- W3000032064 hasConcept C2780513914 @default.
- W3000032064 hasConcept C31258907 @default.
- W3000032064 hasConcept C31395832 @default.
- W3000032064 hasConcept C33923547 @default.
- W3000032064 hasConcept C41008148 @default.
- W3000032064 hasConcept C48044578 @default.
- W3000032064 hasConcept C63540848 @default.
- W3000032064 hasConcept C93996380 @default.
- W3000032064 hasConceptScore W3000032064C101468663 @default.
- W3000032064 hasConceptScore W3000032064C111919701 @default.
- W3000032064 hasConceptScore W3000032064C114614502 @default.
- W3000032064 hasConceptScore W3000032064C117729477 @default.
- W3000032064 hasConceptScore W3000032064C118524514 @default.
- W3000032064 hasConceptScore W3000032064C120314980 @default.
- W3000032064 hasConceptScore W3000032064C149635348 @default.
- W3000032064 hasConceptScore W3000032064C184720557 @default.
- W3000032064 hasConceptScore W3000032064C199845137 @default.
- W3000032064 hasConceptScore W3000032064C2780149590 @default.
- W3000032064 hasConceptScore W3000032064C2780513914 @default.
- W3000032064 hasConceptScore W3000032064C31258907 @default.
- W3000032064 hasConceptScore W3000032064C31395832 @default.
- W3000032064 hasConceptScore W3000032064C33923547 @default.
- W3000032064 hasConceptScore W3000032064C41008148 @default.