Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000033813> ?p ?o ?g. }
- W3000033813 endingPage "183" @default.
- W3000033813 startingPage "165" @default.
- W3000033813 abstract "The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle versus two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., P≠NP ), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(logN)) , and the standard space complexity classes L and NL , and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model. Specifically, our main results are as follows.Lower bounds conditioned on the one cycle versus two cycles conjecture can be instead argued under the L⊈MPC(o(logN)) conjecture: these two assumptions are equivalent, and refuting either of them would lead to o(logN) -round MPC algorithms for a large number of challenging problems, including list ranking, minimum cut, and planarity testing. In fact, we show that these problems and many others require asymptotically the same number of rounds as the seemingly much easier problem of distinguishing between a graph being one cycle or two cycles.Many lower bounds previously argued under the one cycle versus two cycles conjecture can be argued under an even more robust (thus harder to refute) conjecture, namely NL⊈MPC(o(logN)) . Refuting this conjecture would lead to o(logN) -round MPC algorithms for an even larger set of problems, including all-pairs shortest paths, betweenness centrality, and all aforementioned ones. Lower bounds under this conjecture hold for problems such as perfect matching and network flow." @default.
- W3000033813 created "2020-01-23" @default.
- W3000033813 creator A5072734392 @default.
- W3000033813 creator A5074369690 @default.
- W3000033813 date "2022-01-20" @default.
- W3000033813 modified "2023-10-07" @default.
- W3000033813 title "Equivalence classes and conditional hardness in massively parallel computations" @default.
- W3000033813 cites W1503698146 @default.
- W3000033813 cites W1760158404 @default.
- W3000033813 cites W1863846876 @default.
- W3000033813 cites W1975241280 @default.
- W3000033813 cites W1980967952 @default.
- W3000033813 cites W1982129592 @default.
- W3000033813 cites W1986804393 @default.
- W3000033813 cites W1987080985 @default.
- W3000033813 cites W1989887898 @default.
- W3000033813 cites W1990870868 @default.
- W3000033813 cites W1991188222 @default.
- W3000033813 cites W1992996565 @default.
- W3000033813 cites W1994920161 @default.
- W3000033813 cites W2017205387 @default.
- W3000033813 cites W2027637765 @default.
- W3000033813 cites W2028753111 @default.
- W3000033813 cites W2037858972 @default.
- W3000033813 cites W2038247515 @default.
- W3000033813 cites W2039302045 @default.
- W3000033813 cites W2045271686 @default.
- W3000033813 cites W2049516232 @default.
- W3000033813 cites W2053061798 @default.
- W3000033813 cites W2057082426 @default.
- W3000033813 cites W2071260871 @default.
- W3000033813 cites W2084867968 @default.
- W3000033813 cites W2088011174 @default.
- W3000033813 cites W2107805020 @default.
- W3000033813 cites W2131115830 @default.
- W3000033813 cites W2153977620 @default.
- W3000033813 cites W2173213060 @default.
- W3000033813 cites W2175195593 @default.
- W3000033813 cites W2177862760 @default.
- W3000033813 cites W2542459869 @default.
- W3000033813 cites W2545919726 @default.
- W3000033813 cites W2626928698 @default.
- W3000033813 cites W2765269579 @default.
- W3000033813 cites W2767578875 @default.
- W3000033813 cites W2788015272 @default.
- W3000033813 cites W2807720788 @default.
- W3000033813 cites W2892948282 @default.
- W3000033813 cites W2902899861 @default.
- W3000033813 cites W2950274216 @default.
- W3000033813 cites W2951940772 @default.
- W3000033813 cites W2962677563 @default.
- W3000033813 cites W2962714610 @default.
- W3000033813 cites W2963275645 @default.
- W3000033813 cites W2963629655 @default.
- W3000033813 cites W2963813153 @default.
- W3000033813 cites W2964082996 @default.
- W3000033813 cites W2964104106 @default.
- W3000033813 cites W2964294252 @default.
- W3000033813 cites W2971407628 @default.
- W3000033813 cites W2971736579 @default.
- W3000033813 cites W2972236337 @default.
- W3000033813 cites W2972926935 @default.
- W3000033813 cites W2983623630 @default.
- W3000033813 cites W3004078918 @default.
- W3000033813 cites W3034669632 @default.
- W3000033813 cites W3040981273 @default.
- W3000033813 cites W3046888255 @default.
- W3000033813 cites W3096540095 @default.
- W3000033813 cites W3098197211 @default.
- W3000033813 cites W3100671347 @default.
- W3000033813 cites W3101158212 @default.
- W3000033813 cites W3167599539 @default.
- W3000033813 cites W3183684990 @default.
- W3000033813 cites W3184913911 @default.
- W3000033813 cites W4213146104 @default.
- W3000033813 cites W4230889046 @default.
- W3000033813 cites W4236835455 @default.
- W3000033813 cites W4239429564 @default.
- W3000033813 cites W4240117647 @default.
- W3000033813 cites W4249997060 @default.
- W3000033813 cites W4253069973 @default.
- W3000033813 cites W4298227433 @default.
- W3000033813 doi "https://doi.org/10.1007/s00446-021-00418-2" @default.
- W3000033813 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35300185" @default.
- W3000033813 hasPublicationYear "2022" @default.
- W3000033813 type Work @default.
- W3000033813 sameAs 3000033813 @default.
- W3000033813 citedByCount "2" @default.
- W3000033813 countsByYear W30000338132022 @default.
- W3000033813 countsByYear W30000338132023 @default.
- W3000033813 crossrefType "journal-article" @default.
- W3000033813 hasAuthorship W3000033813A5072734392 @default.
- W3000033813 hasAuthorship W3000033813A5074369690 @default.
- W3000033813 hasBestOaLocation W30000338131 @default.
- W3000033813 hasConcept C111472728 @default.
- W3000033813 hasConcept C11413529 @default.
- W3000033813 hasConcept C114614502 @default.
- W3000033813 hasConcept C118615104 @default.