Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000045246> ?p ?o ?g. }
- W3000045246 endingPage "17876" @default.
- W3000045246 startingPage "17863" @default.
- W3000045246 abstract "The identification of suspicious microseismic events is the first crucial step in processing microseismic data. In this paper, we present an automatic classification method based on a deep learning approach for classifying microseismic records in underground mines. A total of 35 commonly used features in the time and frequency domains were extracted from waveforms. To examine the discriminative ability of these features, a genetic algorithm (GA)-optimized correlation-based feature selection (CFS) method was applied. As a result, 11 features were selected to represent microseismic records. By dividing each microseismic record into 50 frames, an 11 × 50 feature matrix was utilized as the input. A convolutional neural network (CNN) with 35 layers was trained on 20,000 samples recorded at the Huangtupo Copper and Zinc Mine. There are 5 types of events: microseismic events, blasting, ore extraction, mechanical noise, and electromagnetic interference. The event type was correctly determined by the trained CNN classifier 98.2% of the time, outperforming traditional machine learning methods." @default.
- W3000045246 created "2020-01-23" @default.
- W3000045246 creator A5021792813 @default.
- W3000045246 creator A5031290854 @default.
- W3000045246 creator A5039633892 @default.
- W3000045246 creator A5090695519 @default.
- W3000045246 date "2020-01-01" @default.
- W3000045246 modified "2023-10-09" @default.
- W3000045246 title "Automatic Classification of Microseismic Records in Underground Mining: A Deep Learning Approach" @default.
- W3000045246 cites W1493357981 @default.
- W3000045246 cites W1563686094 @default.
- W3000045246 cites W1832693441 @default.
- W3000045246 cites W1975514583 @default.
- W3000045246 cites W1979057819 @default.
- W3000045246 cites W2007757881 @default.
- W3000045246 cites W2032342059 @default.
- W3000045246 cites W2092460788 @default.
- W3000045246 cites W2098085861 @default.
- W3000045246 cites W2116258620 @default.
- W3000045246 cites W2131380685 @default.
- W3000045246 cites W2148618863 @default.
- W3000045246 cites W2151251521 @default.
- W3000045246 cites W2154473523 @default.
- W3000045246 cites W2208968870 @default.
- W3000045246 cites W2343420905 @default.
- W3000045246 cites W2407932691 @default.
- W3000045246 cites W2475287302 @default.
- W3000045246 cites W2596623478 @default.
- W3000045246 cites W2613390930 @default.
- W3000045246 cites W2615808098 @default.
- W3000045246 cites W2618530766 @default.
- W3000045246 cites W2774921310 @default.
- W3000045246 cites W2791656462 @default.
- W3000045246 cites W2800149766 @default.
- W3000045246 cites W2883537413 @default.
- W3000045246 cites W2884579092 @default.
- W3000045246 cites W2915868680 @default.
- W3000045246 cites W2948013750 @default.
- W3000045246 cites W2951215677 @default.
- W3000045246 cites W4246020459 @default.
- W3000045246 cites W4289236186 @default.
- W3000045246 doi "https://doi.org/10.1109/access.2020.2967121" @default.
- W3000045246 hasPublicationYear "2020" @default.
- W3000045246 type Work @default.
- W3000045246 sameAs 3000045246 @default.
- W3000045246 citedByCount "17" @default.
- W3000045246 countsByYear W30000452462020 @default.
- W3000045246 countsByYear W30000452462021 @default.
- W3000045246 countsByYear W30000452462022 @default.
- W3000045246 countsByYear W30000452462023 @default.
- W3000045246 crossrefType "journal-article" @default.
- W3000045246 hasAuthorship W3000045246A5021792813 @default.
- W3000045246 hasAuthorship W3000045246A5031290854 @default.
- W3000045246 hasAuthorship W3000045246A5039633892 @default.
- W3000045246 hasAuthorship W3000045246A5090695519 @default.
- W3000045246 hasBestOaLocation W30000452461 @default.
- W3000045246 hasConcept C108583219 @default.
- W3000045246 hasConcept C119857082 @default.
- W3000045246 hasConcept C127313418 @default.
- W3000045246 hasConcept C148483581 @default.
- W3000045246 hasConcept C153180895 @default.
- W3000045246 hasConcept C154945302 @default.
- W3000045246 hasConcept C165205528 @default.
- W3000045246 hasConcept C41008148 @default.
- W3000045246 hasConcept C52622490 @default.
- W3000045246 hasConcept C7266685 @default.
- W3000045246 hasConcept C81363708 @default.
- W3000045246 hasConcept C95623464 @default.
- W3000045246 hasConcept C97931131 @default.
- W3000045246 hasConceptScore W3000045246C108583219 @default.
- W3000045246 hasConceptScore W3000045246C119857082 @default.
- W3000045246 hasConceptScore W3000045246C127313418 @default.
- W3000045246 hasConceptScore W3000045246C148483581 @default.
- W3000045246 hasConceptScore W3000045246C153180895 @default.
- W3000045246 hasConceptScore W3000045246C154945302 @default.
- W3000045246 hasConceptScore W3000045246C165205528 @default.
- W3000045246 hasConceptScore W3000045246C41008148 @default.
- W3000045246 hasConceptScore W3000045246C52622490 @default.
- W3000045246 hasConceptScore W3000045246C7266685 @default.
- W3000045246 hasConceptScore W3000045246C81363708 @default.
- W3000045246 hasConceptScore W3000045246C95623464 @default.
- W3000045246 hasConceptScore W3000045246C97931131 @default.
- W3000045246 hasFunder F4320335777 @default.
- W3000045246 hasLocation W30000452461 @default.
- W3000045246 hasLocation W30000452462 @default.
- W3000045246 hasOpenAccess W3000045246 @default.
- W3000045246 hasPrimaryLocation W30000452461 @default.
- W3000045246 hasRelatedWork W2404514746 @default.
- W3000045246 hasRelatedWork W2406522397 @default.
- W3000045246 hasRelatedWork W2518599539 @default.
- W3000045246 hasRelatedWork W2732542196 @default.
- W3000045246 hasRelatedWork W2905846897 @default.
- W3000045246 hasRelatedWork W2995914718 @default.
- W3000045246 hasRelatedWork W3156786002 @default.
- W3000045246 hasRelatedWork W4299822940 @default.
- W3000045246 hasRelatedWork W4307883119 @default.
- W3000045246 hasRelatedWork W564581980 @default.
- W3000045246 hasVolume "8" @default.