Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000050921> ?p ?o ?g. }
- W3000050921 abstract "Abstract Background To develop and validate a novel, machine learning-derived model for prediction of cardiovascular (CV) mortality risk using office (OBP) and ambulatory blood pressure (ABP), to compare its performance with existing risk scores, and to assess the possibility of predicting ABP phenotypes (i.e. white-coat, ambulatory and masked hypertension) utilizing clinical variables. Methods Using data from 63,910 patients enrolled in the Spanish ABP monitoring registry, machine-learning approaches (logistic regression, support vector machine, gradient boosted decision trees, and deep neural networks) and stepwise forward feature selection were used for the classification of the data. Results Over a median follow-up of 4.7 years, 3,808 deaths occurred from which 1,295 were from CV causes. The performance for all tested classifiers increased while adding up to 10 features and converged thereafter. For the prediction of CV mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP (CV-Mortality OBP ) and ABP (CV-Mortality ABP ) outperformed all other risk scores. The area under the curve (AUC) achieved by the novel approach, using OBP variables only, was already significantly higher when compared with the AUC of Framingham score (0.685 vs 0.659, p = 1.97×10 −22 ), the SCORE (0.679 vs 0.613, p = 6.21×10 −22 ), and ASCVD (0.722 vs 0.639, p = 8.03×10 −30 ) risk score. However, prediction of CV mortality with ABP instead of OBP data led to a significant increase in AUC (0.781 vs 0.752, p = 1.73×10 −42 ), accuracy, balanced accuracy and sensitivity. The sensitivity and specificity for detection of ambulatory, masked, and white-coat hypertension ranged between 0.653-0.661 and 0.573-0.651, respectively. Conclusion We developed a novel risk calculator for CV death using artificial intelligence based on a large cohort of patients included in the Spanish ABP monitoring registry. The receiver operating characteristic curves for CV-Mortality OBP and CV-Mortality ABP with deep neural networks models outperformed all other risk metrics. Prediction of CV mortality using ABP data led to a significant increase in performance metrics. The prediction of ambulatory phenotypes using clinical characteristics, including OBP, was limited." @default.
- W3000050921 created "2020-01-23" @default.
- W3000050921 creator A5001857371 @default.
- W3000050921 creator A5004807259 @default.
- W3000050921 creator A5005151561 @default.
- W3000050921 creator A5020280119 @default.
- W3000050921 creator A5029674394 @default.
- W3000050921 creator A5037618214 @default.
- W3000050921 creator A5040062593 @default.
- W3000050921 creator A5047340316 @default.
- W3000050921 creator A5050373267 @default.
- W3000050921 creator A5059623295 @default.
- W3000050921 creator A5067064660 @default.
- W3000050921 creator A5087435321 @default.
- W3000050921 creator A5091912873 @default.
- W3000050921 date "2020-01-18" @default.
- W3000050921 modified "2023-10-18" @default.
- W3000050921 title "Risk prediction with office and ambulatory blood pressure using artificial intelligence" @default.
- W3000050921 cites W2034643992 @default.
- W3000050921 cites W2106510634 @default.
- W3000050921 cites W2112199485 @default.
- W3000050921 cites W2119953883 @default.
- W3000050921 cites W2129391087 @default.
- W3000050921 cites W2165884492 @default.
- W3000050921 cites W2244501064 @default.
- W3000050921 cites W2402599050 @default.
- W3000050921 cites W2521064640 @default.
- W3000050921 cites W2549885908 @default.
- W3000050921 cites W2724277155 @default.
- W3000050921 cites W2770837559 @default.
- W3000050921 cites W2778924750 @default.
- W3000050921 cites W2794873673 @default.
- W3000050921 cites W2802565200 @default.
- W3000050921 cites W2807593075 @default.
- W3000050921 cites W2888589263 @default.
- W3000050921 cites W2895368692 @default.
- W3000050921 cites W2902644322 @default.
- W3000050921 cites W2919115771 @default.
- W3000050921 cites W2923923482 @default.
- W3000050921 cites W2966011904 @default.
- W3000050921 cites W2966426614 @default.
- W3000050921 cites W2975160091 @default.
- W3000050921 cites W2979904523 @default.
- W3000050921 cites W3001764054 @default.
- W3000050921 cites W4253582190 @default.
- W3000050921 doi "https://doi.org/10.1101/2020.01.17.20017798" @default.
- W3000050921 hasPublicationYear "2020" @default.
- W3000050921 type Work @default.
- W3000050921 sameAs 3000050921 @default.
- W3000050921 citedByCount "1" @default.
- W3000050921 countsByYear W30000509212022 @default.
- W3000050921 crossrefType "posted-content" @default.
- W3000050921 hasAuthorship W3000050921A5001857371 @default.
- W3000050921 hasAuthorship W3000050921A5004807259 @default.
- W3000050921 hasAuthorship W3000050921A5005151561 @default.
- W3000050921 hasAuthorship W3000050921A5020280119 @default.
- W3000050921 hasAuthorship W3000050921A5029674394 @default.
- W3000050921 hasAuthorship W3000050921A5037618214 @default.
- W3000050921 hasAuthorship W3000050921A5040062593 @default.
- W3000050921 hasAuthorship W3000050921A5047340316 @default.
- W3000050921 hasAuthorship W3000050921A5050373267 @default.
- W3000050921 hasAuthorship W3000050921A5059623295 @default.
- W3000050921 hasAuthorship W3000050921A5067064660 @default.
- W3000050921 hasAuthorship W3000050921A5087435321 @default.
- W3000050921 hasAuthorship W3000050921A5091912873 @default.
- W3000050921 hasBestOaLocation W30000509211 @default.
- W3000050921 hasConcept C111815664 @default.
- W3000050921 hasConcept C11783203 @default.
- W3000050921 hasConcept C119857082 @default.
- W3000050921 hasConcept C12267149 @default.
- W3000050921 hasConcept C126322002 @default.
- W3000050921 hasConcept C148483581 @default.
- W3000050921 hasConcept C149323552 @default.
- W3000050921 hasConcept C151956035 @default.
- W3000050921 hasConcept C154945302 @default.
- W3000050921 hasConcept C170964787 @default.
- W3000050921 hasConcept C2779134260 @default.
- W3000050921 hasConcept C35785553 @default.
- W3000050921 hasConcept C41008148 @default.
- W3000050921 hasConcept C50644808 @default.
- W3000050921 hasConcept C71924100 @default.
- W3000050921 hasConcept C84393581 @default.
- W3000050921 hasConcept C84525736 @default.
- W3000050921 hasConceptScore W3000050921C111815664 @default.
- W3000050921 hasConceptScore W3000050921C11783203 @default.
- W3000050921 hasConceptScore W3000050921C119857082 @default.
- W3000050921 hasConceptScore W3000050921C12267149 @default.
- W3000050921 hasConceptScore W3000050921C126322002 @default.
- W3000050921 hasConceptScore W3000050921C148483581 @default.
- W3000050921 hasConceptScore W3000050921C149323552 @default.
- W3000050921 hasConceptScore W3000050921C151956035 @default.
- W3000050921 hasConceptScore W3000050921C154945302 @default.
- W3000050921 hasConceptScore W3000050921C170964787 @default.
- W3000050921 hasConceptScore W3000050921C2779134260 @default.
- W3000050921 hasConceptScore W3000050921C35785553 @default.
- W3000050921 hasConceptScore W3000050921C41008148 @default.
- W3000050921 hasConceptScore W3000050921C50644808 @default.
- W3000050921 hasConceptScore W3000050921C71924100 @default.
- W3000050921 hasConceptScore W3000050921C84393581 @default.
- W3000050921 hasConceptScore W3000050921C84525736 @default.