Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000078812> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3000078812 abstract "Abstract The application of machine learning algorithms to neuroimaging data shows great promise for the classification of physiological and pathological brain states. However, classifiers trained on high dimensional data are prone to overfitting, especially for a low number of training samples. We describe the use of whole-brain computational models for data augmentation in brain state classification. Our low dimensional model is based on nonlinear oscillators coupled by the empirical SC of the brain. We use this model to enhance a dataset consisting of functional magnetic resonance imaging recordings acquired during all stages of the human wake-sleep cycle. After fitting the model to the average FC of each state, we show that the synthetic data generated by the model yields classification accuracies comparable to those obtained from the empirical data. We also show that models fitted to individual subjects generate surrogates with enough information to train classifiers that present significant transfer learning accuracy to the whole sample. Whole-brain computational modeling represents a useful tool to produce large synthetic datasets for data augmentation in the classification of certain brain states, with potential applications to computer-assisted diagnosis and prognosis of neuropsychiatric disorders." @default.
- W3000078812 created "2020-01-23" @default.
- W3000078812 creator A5006651985 @default.
- W3000078812 creator A5007219011 @default.
- W3000078812 creator A5043559110 @default.
- W3000078812 creator A5047963275 @default.
- W3000078812 creator A5058986420 @default.
- W3000078812 creator A5060218788 @default.
- W3000078812 creator A5091490801 @default.
- W3000078812 date "2020-01-09" @default.
- W3000078812 modified "2023-10-08" @default.
- W3000078812 title "Data augmentation based on dynamical systems for the classification of brain states" @default.
- W3000078812 cites W2000133863 @default.
- W3000078812 cites W2001567161 @default.
- W3000078812 cites W2002923643 @default.
- W3000078812 cites W2028739995 @default.
- W3000078812 cites W2058046532 @default.
- W3000078812 cites W2112185786 @default.
- W3000078812 cites W2118693417 @default.
- W3000078812 cites W2130246912 @default.
- W3000078812 cites W2133665775 @default.
- W3000078812 cites W2159929956 @default.
- W3000078812 cites W2400562279 @default.
- W3000078812 cites W2590144118 @default.
- W3000078812 cites W2772639718 @default.
- W3000078812 cites W2951401594 @default.
- W3000078812 cites W2977556336 @default.
- W3000078812 cites W4300009529 @default.
- W3000078812 doi "https://doi.org/10.1101/2020.01.08.898999" @default.
- W3000078812 hasPublicationYear "2020" @default.
- W3000078812 type Work @default.
- W3000078812 sameAs 3000078812 @default.
- W3000078812 citedByCount "2" @default.
- W3000078812 countsByYear W30000788122020 @default.
- W3000078812 crossrefType "posted-content" @default.
- W3000078812 hasAuthorship W3000078812A5006651985 @default.
- W3000078812 hasAuthorship W3000078812A5007219011 @default.
- W3000078812 hasAuthorship W3000078812A5043559110 @default.
- W3000078812 hasAuthorship W3000078812A5047963275 @default.
- W3000078812 hasAuthorship W3000078812A5058986420 @default.
- W3000078812 hasAuthorship W3000078812A5060218788 @default.
- W3000078812 hasAuthorship W3000078812A5091490801 @default.
- W3000078812 hasBestOaLocation W30000788121 @default.
- W3000078812 hasConcept C119857082 @default.
- W3000078812 hasConcept C120843803 @default.
- W3000078812 hasConcept C153180895 @default.
- W3000078812 hasConcept C154945302 @default.
- W3000078812 hasConcept C15744967 @default.
- W3000078812 hasConcept C169760540 @default.
- W3000078812 hasConcept C22019652 @default.
- W3000078812 hasConcept C41008148 @default.
- W3000078812 hasConcept C50644808 @default.
- W3000078812 hasConcept C522805319 @default.
- W3000078812 hasConcept C58693492 @default.
- W3000078812 hasConceptScore W3000078812C119857082 @default.
- W3000078812 hasConceptScore W3000078812C120843803 @default.
- W3000078812 hasConceptScore W3000078812C153180895 @default.
- W3000078812 hasConceptScore W3000078812C154945302 @default.
- W3000078812 hasConceptScore W3000078812C15744967 @default.
- W3000078812 hasConceptScore W3000078812C169760540 @default.
- W3000078812 hasConceptScore W3000078812C22019652 @default.
- W3000078812 hasConceptScore W3000078812C41008148 @default.
- W3000078812 hasConceptScore W3000078812C50644808 @default.
- W3000078812 hasConceptScore W3000078812C522805319 @default.
- W3000078812 hasConceptScore W3000078812C58693492 @default.
- W3000078812 hasLocation W30000788121 @default.
- W3000078812 hasOpenAccess W3000078812 @default.
- W3000078812 hasPrimaryLocation W30000788121 @default.
- W3000078812 hasRelatedWork W11562254 @default.
- W3000078812 hasRelatedWork W11701333 @default.
- W3000078812 hasRelatedWork W11919366 @default.
- W3000078812 hasRelatedWork W15119441 @default.
- W3000078812 hasRelatedWork W2117307 @default.
- W3000078812 hasRelatedWork W4275953 @default.
- W3000078812 hasRelatedWork W6229082 @default.
- W3000078812 hasRelatedWork W6680660 @default.
- W3000078812 hasRelatedWork W4269496 @default.
- W3000078812 hasRelatedWork W5829715 @default.
- W3000078812 isParatext "false" @default.
- W3000078812 isRetracted "false" @default.
- W3000078812 magId "3000078812" @default.
- W3000078812 workType "article" @default.