Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000084958> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3000084958 endingPage "130" @default.
- W3000084958 startingPage "116" @default.
- W3000084958 abstract "Lateral localization is a very sensible factor for evaluating the performance of autonomous driving. This paper addresses the general reasons of the lateral drifting by analyzing the performance of an accurate localization system at level of 10∼20 cm. The performance drops into 0.4∼3 m in winter because of the snow and wet road surface representations in the LIDAR data. Accordingly, we prove that enhancing the quality of online LIDAR data before calculating the matching score with the map is a key-solution to improve the lateral accuracy. This can be achieved by filtering-out snow, regenerating the road edges at correct positions and sharping-up the lane lines. To achieve these objectives, we propose a machine learning based road-mark reconstruction framework. The map images are converted into edge profiles to represent the road-marks in a series of peaks. Principal Component Analysis (PCA) is used to model the relationships between these peaks and extract the dominant distribution patterns. Based on the leading eigenvectors (eigenroads), the LIDAR edge profiles are safely and efficiently reconstructed during the autonomous driving. The reliability of the proposed framework has been tested using map data generated in 2015 and LIDAR data collected in 2016 and 2017 in snowy and rainy weather conditions. The experimental results have verified the robustness and truthfulness of the proposed framework to significantly improve the lateral accuracy in the LIDAR based localization systems. The localization accuracy has been enhanced to be 96.4% for 15 cm average error in very critical situations of changing the road patterns and the environmental conditions. <p xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>The reliability of the proposed framework has been tested using map data generated in 2015 and LIDAR data collected in 2016 and 2017 in snowy and rainy weather conditions. The experimental results have verified the robustness and truthfulness of the proposed framework to significantly improve the lateral accuracy in the LIDAR based localization systems. The localization accuracy has been enhanced to be 96.4% for 15 cm average error in very critical situations of changing the road patterns and the environmental conditions." @default.
- W3000084958 created "2020-01-23" @default.
- W3000084958 creator A5006749788 @default.
- W3000084958 creator A5029277331 @default.
- W3000084958 creator A5041493122 @default.
- W3000084958 creator A5047921756 @default.
- W3000084958 creator A5067425104 @default.
- W3000084958 creator A5078438603 @default.
- W3000084958 date "2021-01-01" @default.
- W3000084958 modified "2023-09-27" @default.
- W3000084958 title "Improving Lateral Autonomous Driving in Snow-Wet Environments Based on Road-Mark Reconstruction Using Principal Component Analysis" @default.
- W3000084958 cites W2009345891 @default.
- W3000084958 cites W2021063678 @default.
- W3000084958 cites W2098693229 @default.
- W3000084958 cites W2218718890 @default.
- W3000084958 cites W2472350142 @default.
- W3000084958 cites W2527925474 @default.
- W3000084958 cites W2563967940 @default.
- W3000084958 cites W2605103573 @default.
- W3000084958 cites W2622358436 @default.
- W3000084958 cites W2733731448 @default.
- W3000084958 cites W2739548082 @default.
- W3000084958 cites W2744745135 @default.
- W3000084958 cites W2766127076 @default.
- W3000084958 cites W2767014298 @default.
- W3000084958 cites W2775532222 @default.
- W3000084958 cites W2791639158 @default.
- W3000084958 cites W3216042775 @default.
- W3000084958 doi "https://doi.org/10.1109/mits.2019.2907675" @default.
- W3000084958 hasPublicationYear "2021" @default.
- W3000084958 type Work @default.
- W3000084958 sameAs 3000084958 @default.
- W3000084958 citedByCount "3" @default.
- W3000084958 countsByYear W30000849582023 @default.
- W3000084958 crossrefType "journal-article" @default.
- W3000084958 hasAuthorship W3000084958A5006749788 @default.
- W3000084958 hasAuthorship W3000084958A5029277331 @default.
- W3000084958 hasAuthorship W3000084958A5041493122 @default.
- W3000084958 hasAuthorship W3000084958A5047921756 @default.
- W3000084958 hasAuthorship W3000084958A5067425104 @default.
- W3000084958 hasAuthorship W3000084958A5078438603 @default.
- W3000084958 hasConcept C104317684 @default.
- W3000084958 hasConcept C153294291 @default.
- W3000084958 hasConcept C154945302 @default.
- W3000084958 hasConcept C162307627 @default.
- W3000084958 hasConcept C185592680 @default.
- W3000084958 hasConcept C197046000 @default.
- W3000084958 hasConcept C205649164 @default.
- W3000084958 hasConcept C27438332 @default.
- W3000084958 hasConcept C31972630 @default.
- W3000084958 hasConcept C39432304 @default.
- W3000084958 hasConcept C41008148 @default.
- W3000084958 hasConcept C51399673 @default.
- W3000084958 hasConcept C55493867 @default.
- W3000084958 hasConcept C62649853 @default.
- W3000084958 hasConcept C63479239 @default.
- W3000084958 hasConceptScore W3000084958C104317684 @default.
- W3000084958 hasConceptScore W3000084958C153294291 @default.
- W3000084958 hasConceptScore W3000084958C154945302 @default.
- W3000084958 hasConceptScore W3000084958C162307627 @default.
- W3000084958 hasConceptScore W3000084958C185592680 @default.
- W3000084958 hasConceptScore W3000084958C197046000 @default.
- W3000084958 hasConceptScore W3000084958C205649164 @default.
- W3000084958 hasConceptScore W3000084958C27438332 @default.
- W3000084958 hasConceptScore W3000084958C31972630 @default.
- W3000084958 hasConceptScore W3000084958C39432304 @default.
- W3000084958 hasConceptScore W3000084958C41008148 @default.
- W3000084958 hasConceptScore W3000084958C51399673 @default.
- W3000084958 hasConceptScore W3000084958C55493867 @default.
- W3000084958 hasConceptScore W3000084958C62649853 @default.
- W3000084958 hasConceptScore W3000084958C63479239 @default.
- W3000084958 hasIssue "4" @default.
- W3000084958 hasLocation W30000849581 @default.
- W3000084958 hasOpenAccess W3000084958 @default.
- W3000084958 hasPrimaryLocation W30000849581 @default.
- W3000084958 hasRelatedWork W2001618165 @default.
- W3000084958 hasRelatedWork W2035976912 @default.
- W3000084958 hasRelatedWork W2036807459 @default.
- W3000084958 hasRelatedWork W2109974539 @default.
- W3000084958 hasRelatedWork W2125927971 @default.
- W3000084958 hasRelatedWork W2145486338 @default.
- W3000084958 hasRelatedWork W2324627161 @default.
- W3000084958 hasRelatedWork W2541791370 @default.
- W3000084958 hasRelatedWork W2738084969 @default.
- W3000084958 hasRelatedWork W2954664659 @default.
- W3000084958 hasVolume "13" @default.
- W3000084958 isParatext "false" @default.
- W3000084958 isRetracted "false" @default.
- W3000084958 magId "3000084958" @default.
- W3000084958 workType "article" @default.