Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000097712> ?p ?o ?g. }
- W3000097712 endingPage "117810" @default.
- W3000097712 startingPage "117810" @default.
- W3000097712 abstract "• Response of tree species to treatments depends on their seed dispersal mechanisms. • Appearance, survival and growth of tree saplings is the best in clear-cuts and gaps. • The establishment of regeneration is successful by continuous cover forestry. • Without tending, shade-tolerant hornbeam outcompete oak species. • Continuous cover forestry will result in more mixed oak stands than rotation forestry. Ecological, economic, and social demands triggered a shift in the management of temperate deciduous forests from rotation forestry system towards more nature-based forest management techniques such as continuous cover forestry. However, there is insufficient knowledge on the regeneration success of different tree species—especially oaks—within this management system. Through a systematic experiment, we compared the regeneration processes of a sessile oak-hornbeam forest after gap-cutting (as an element of continuous cover forestry system) to regeneration after clear-cutting, preparation cutting, and in retention tree groups (treatments of rotation forestry system). A managed, closed, mature forest was used as control. Several different aspects of the regeneration were studied: (1) seed supply of sessile oak— Quercus petraea (Matt.) Liebl., (2) species number and abundance of the natural regeneration, (3) survival and growth of individual saplings of five tree species (sessile and Turkey oak— Quercus cerris L., hornbeam— Carpinus betulus L . , beech— Fagus sylvatica L., and common ash— Fraxinus excelsior L.). The number of acorns was high in closed forest, intermediate in preparation cutting and retention tree group, low in gaps, and zero in clear-cutting. Four years after the interventions, there was no detectable treatment effect on the species number of regeneration. Survival increased in every treatment compared to control, but there was no significant difference in this measure between the differently treated sites. Height growth was highest in the gaps and clear-cuts, intermediate in preparation cuts, and lowest in retention tree groups and controls. Species with different seed dispersal mechanisms responded differently to treatments: oaks were dispersal-limited in the gaps and clear-cuts, while anemochorous species (e.g., hornbeam and manna ash) were present in every treatment. The survival and growth pattern of the particular species proved to be similar, but the intensity of the response differed: shade-tolerants (hornbeam, beech, and ash) showed better survival than oaks in most treatments, and their height growth was larger. According to our results, oak regeneration establishes successfully in oak-hornbeam forests not only in the case of rotation forestry, but also during continuous cover forestry (gap-cutting). The survival and growth of the saplings are similar in cutting areas and gaps, but keeping in mind other considerations (such as preserving forest continuity, balanced site conditions, and forest biodiversity), continuous cover forestry should be preferred." @default.
- W3000097712 created "2020-01-23" @default.
- W3000097712 creator A5009147483 @default.
- W3000097712 creator A5023573982 @default.
- W3000097712 creator A5034912555 @default.
- W3000097712 creator A5037540617 @default.
- W3000097712 creator A5039869582 @default.
- W3000097712 creator A5046022969 @default.
- W3000097712 creator A5046654356 @default.
- W3000097712 date "2020-03-01" @default.
- W3000097712 modified "2023-10-09" @default.
- W3000097712 title "Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest" @default.
- W3000097712 cites W142287436 @default.
- W3000097712 cites W1544199318 @default.
- W3000097712 cites W1951724000 @default.
- W3000097712 cites W1954640172 @default.
- W3000097712 cites W1966294363 @default.
- W3000097712 cites W1980661209 @default.
- W3000097712 cites W1981219369 @default.
- W3000097712 cites W1991922387 @default.
- W3000097712 cites W1992818388 @default.
- W3000097712 cites W1993861258 @default.
- W3000097712 cites W1994014674 @default.
- W3000097712 cites W1994289600 @default.
- W3000097712 cites W2015258589 @default.
- W3000097712 cites W2016003350 @default.
- W3000097712 cites W2018641424 @default.
- W3000097712 cites W2024132666 @default.
- W3000097712 cites W2028043141 @default.
- W3000097712 cites W2031922398 @default.
- W3000097712 cites W2036441330 @default.
- W3000097712 cites W2038996003 @default.
- W3000097712 cites W2040297295 @default.
- W3000097712 cites W2047712120 @default.
- W3000097712 cites W2049080108 @default.
- W3000097712 cites W2051048900 @default.
- W3000097712 cites W2055502068 @default.
- W3000097712 cites W2056115163 @default.
- W3000097712 cites W2057335415 @default.
- W3000097712 cites W2065018749 @default.
- W3000097712 cites W2082449294 @default.
- W3000097712 cites W2083958011 @default.
- W3000097712 cites W2084045328 @default.
- W3000097712 cites W2086434250 @default.
- W3000097712 cites W2087058426 @default.
- W3000097712 cites W2113283046 @default.
- W3000097712 cites W2113898751 @default.
- W3000097712 cites W2117277577 @default.
- W3000097712 cites W2120517604 @default.
- W3000097712 cites W2127877291 @default.
- W3000097712 cites W2127939347 @default.
- W3000097712 cites W2129881984 @default.
- W3000097712 cites W2134406805 @default.
- W3000097712 cites W2149719430 @default.
- W3000097712 cites W2157410194 @default.
- W3000097712 cites W2158774225 @default.
- W3000097712 cites W2169016210 @default.
- W3000097712 cites W2177564653 @default.
- W3000097712 cites W2179269102 @default.
- W3000097712 cites W2207629168 @default.
- W3000097712 cites W2334115295 @default.
- W3000097712 cites W2339595783 @default.
- W3000097712 cites W2346429250 @default.
- W3000097712 cites W24688805 @default.
- W3000097712 cites W2518841060 @default.
- W3000097712 cites W2523378843 @default.
- W3000097712 cites W2527690050 @default.
- W3000097712 cites W2579262117 @default.
- W3000097712 cites W2596726407 @default.
- W3000097712 cites W2761797692 @default.
- W3000097712 cites W2767084998 @default.
- W3000097712 cites W2788141945 @default.
- W3000097712 cites W2792384647 @default.
- W3000097712 cites W2797477231 @default.
- W3000097712 cites W2806847633 @default.
- W3000097712 cites W2811487352 @default.
- W3000097712 cites W2900465464 @default.
- W3000097712 cites W2903215668 @default.
- W3000097712 cites W2905116780 @default.
- W3000097712 cites W2921823502 @default.
- W3000097712 cites W2941015270 @default.
- W3000097712 cites W2990257819 @default.
- W3000097712 doi "https://doi.org/10.1016/j.foreco.2019.117810" @default.
- W3000097712 hasPublicationYear "2020" @default.
- W3000097712 type Work @default.
- W3000097712 sameAs 3000097712 @default.
- W3000097712 citedByCount "26" @default.
- W3000097712 countsByYear W30000977122021 @default.
- W3000097712 countsByYear W30000977122022 @default.
- W3000097712 countsByYear W30000977122023 @default.
- W3000097712 crossrefType "journal-article" @default.
- W3000097712 hasAuthorship W3000097712A5009147483 @default.
- W3000097712 hasAuthorship W3000097712A5023573982 @default.
- W3000097712 hasAuthorship W3000097712A5034912555 @default.
- W3000097712 hasAuthorship W3000097712A5037540617 @default.
- W3000097712 hasAuthorship W3000097712A5039869582 @default.
- W3000097712 hasAuthorship W3000097712A5046022969 @default.
- W3000097712 hasAuthorship W3000097712A5046654356 @default.