Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000192801> ?p ?o ?g. }
- W3000192801 endingPage "6679" @default.
- W3000192801 startingPage "6663" @default.
- W3000192801 abstract "Detailed heat exchanger designs are determined by matching intermediate temperatures in a large-scale Claude refrigeration process for liquefaction of hydrogen with a capacity of 125 tons/day. A comparison is made of catalyst filled plate-fin and spiral-wound heat exchangers by use of a flexible and robust modeling framework for multi-stream heat exchangers that incorporates conversion of ortho-to para-hydrogen in the hydrogen feed stream, accurate thermophysical models and a distributed resolution of all streams and wall temperatures. Maps of the local exergy destruction in the heat exchangers are presented, which enable the identification of several avenues to improve their performances. The heat exchanger duties vary between 1 and 31 MW and their second law energy efficiencies vary between 72.3% and 96.6%. Due to geometrical constraints imposed by the heat exchanger manufacturers, it is necessary to employ between one to four parallel plate-fin heat exchanger modules, while it is possible to use single modules in series for the spiral-wound heat exchangers. Due to the lower surface density and heat transfer coefficients in the spiral-wound heat exchangers, their weights are 2–14 times higher than those of the plate-fin heat exchangers. In the first heat exchanger, hydrogen feed gas is cooled from ambient temperature to about 120 K by use of a single mixed refrigerant cycle. Here, most of the exergy destruction occurs when the high-pressure mixed refrigerant enters the single-phase regime. A dual mixed refrigerant or a cascade process holds the potential to remove a large part of this exergy destruction and improve the efficiency. In many of the heat exchangers, uneven local exergy destruction reveals a potential for further optimization of geometrical parameters, in combination with process parameters and constraints. The framework presented makes it possible to compare different sources of exergy destruction on equal terms and enables a qualified specification on the maximum allowed pressure drops in the streams. The mole fraction of para-hydrogen is significantly closer to the equilibrium composition through the entire process for the spiral-wound heat exchangers due to the longer residence time. This reduces the exergy destruction from the conversion of ortho-hydrogen and results in a higher outlet mole fraction of para-hydrogen from the process. Because of the higher surface densities of the plate-fin heat exchangers, they are the preferred technology for hydrogen liquefaction, unless a higher conversion to heat exchange ratio is desired." @default.
- W3000192801 created "2020-01-23" @default.
- W3000192801 creator A5039083348 @default.
- W3000192801 creator A5040752863 @default.
- W3000192801 creator A5080334122 @default.
- W3000192801 date "2020-02-01" @default.
- W3000192801 modified "2023-10-14" @default.
- W3000192801 title "Comparing exergy losses and evaluating the potential of catalyst-filled plate-fin and spiral-wound heat exchangers in a large-scale Claude hydrogen liquefaction process" @default.
- W3000192801 cites W1964666800 @default.
- W3000192801 cites W1983191702 @default.
- W3000192801 cites W1994326303 @default.
- W3000192801 cites W2004430970 @default.
- W3000192801 cites W2004936374 @default.
- W3000192801 cites W2028464786 @default.
- W3000192801 cites W2029404594 @default.
- W3000192801 cites W2032053332 @default.
- W3000192801 cites W2043977944 @default.
- W3000192801 cites W2052249954 @default.
- W3000192801 cites W2068608548 @default.
- W3000192801 cites W2074729340 @default.
- W3000192801 cites W2076461701 @default.
- W3000192801 cites W2086649221 @default.
- W3000192801 cites W2111419912 @default.
- W3000192801 cites W2157181494 @default.
- W3000192801 cites W2169981426 @default.
- W3000192801 cites W2191072129 @default.
- W3000192801 cites W2321975647 @default.
- W3000192801 cites W2324100601 @default.
- W3000192801 cites W2473051696 @default.
- W3000192801 cites W2592118616 @default.
- W3000192801 cites W2748655173 @default.
- W3000192801 cites W2774313722 @default.
- W3000192801 cites W2775180214 @default.
- W3000192801 cites W2789589713 @default.
- W3000192801 cites W2891187145 @default.
- W3000192801 cites W2944561873 @default.
- W3000192801 cites W2946363734 @default.
- W3000192801 cites W3098997935 @default.
- W3000192801 cites W4233919543 @default.
- W3000192801 cites W575722963 @default.
- W3000192801 doi "https://doi.org/10.1016/j.ijhydene.2019.12.076" @default.
- W3000192801 hasPublicationYear "2020" @default.
- W3000192801 type Work @default.
- W3000192801 sameAs 3000192801 @default.
- W3000192801 citedByCount "29" @default.
- W3000192801 countsByYear W30001928012021 @default.
- W3000192801 countsByYear W30001928012022 @default.
- W3000192801 countsByYear W30001928012023 @default.
- W3000192801 crossrefType "journal-article" @default.
- W3000192801 hasAuthorship W3000192801A5039083348 @default.
- W3000192801 hasAuthorship W3000192801A5040752863 @default.
- W3000192801 hasAuthorship W3000192801A5080334122 @default.
- W3000192801 hasBestOaLocation W30001928011 @default.
- W3000192801 hasConcept C107706546 @default.
- W3000192801 hasConcept C113146524 @default.
- W3000192801 hasConcept C118227150 @default.
- W3000192801 hasConcept C121332964 @default.
- W3000192801 hasConcept C127413603 @default.
- W3000192801 hasConcept C159985019 @default.
- W3000192801 hasConcept C185592680 @default.
- W3000192801 hasConcept C191859794 @default.
- W3000192801 hasConcept C192562407 @default.
- W3000192801 hasConcept C199499590 @default.
- W3000192801 hasConcept C32375409 @default.
- W3000192801 hasConcept C39420092 @default.
- W3000192801 hasConcept C57879066 @default.
- W3000192801 hasConcept C78519656 @default.
- W3000192801 hasConcept C91721477 @default.
- W3000192801 hasConcept C97355855 @default.
- W3000192801 hasConceptScore W3000192801C107706546 @default.
- W3000192801 hasConceptScore W3000192801C113146524 @default.
- W3000192801 hasConceptScore W3000192801C118227150 @default.
- W3000192801 hasConceptScore W3000192801C121332964 @default.
- W3000192801 hasConceptScore W3000192801C127413603 @default.
- W3000192801 hasConceptScore W3000192801C159985019 @default.
- W3000192801 hasConceptScore W3000192801C185592680 @default.
- W3000192801 hasConceptScore W3000192801C191859794 @default.
- W3000192801 hasConceptScore W3000192801C192562407 @default.
- W3000192801 hasConceptScore W3000192801C199499590 @default.
- W3000192801 hasConceptScore W3000192801C32375409 @default.
- W3000192801 hasConceptScore W3000192801C39420092 @default.
- W3000192801 hasConceptScore W3000192801C57879066 @default.
- W3000192801 hasConceptScore W3000192801C78519656 @default.
- W3000192801 hasConceptScore W3000192801C91721477 @default.
- W3000192801 hasConceptScore W3000192801C97355855 @default.
- W3000192801 hasFunder F4320307019 @default.
- W3000192801 hasFunder F4320307816 @default.
- W3000192801 hasFunder F4320325637 @default.
- W3000192801 hasFunder F4320334749 @default.
- W3000192801 hasIssue "11" @default.
- W3000192801 hasLocation W30001928011 @default.
- W3000192801 hasOpenAccess W3000192801 @default.
- W3000192801 hasPrimaryLocation W30001928011 @default.
- W3000192801 hasRelatedWork W1583328181 @default.
- W3000192801 hasRelatedWork W1672917214 @default.
- W3000192801 hasRelatedWork W1959041073 @default.
- W3000192801 hasRelatedWork W2004890220 @default.
- W3000192801 hasRelatedWork W2725285853 @default.