Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000205767> ?p ?o ?g. }
- W3000205767 endingPage "6028" @default.
- W3000205767 startingPage "6015" @default.
- W3000205767 abstract "When a fixed number of support vector machines (SVMs) are taken as the base learners, an attempt to diversify them should be encouraged to achieve a satisfactory ensemble. In this article, by means of a negative agreement learning (NAL) strategy, a new SVM-based ensemble framework is proposed to simultaneously enhance the diversity of SVMs in the ensemble and suppress the training error of the ensemble. The proposed ensemble framework is theoretically derived to have distinctive merits: 1) the ensemble and each of its individual SVM base learner are trained in a joint manner rather than in an independent manner and 2) the NAL strategy facilitates the formulation of the ensemble of SVMs as one single SVM; thus, abundant advances in the training of SVM can be conveniently applied to the proposed ensemble learning of SVMs and there is no need to design special optimization techniques for the involved ensemble learning. Extensive experimental studies demonstrate the effectiveness of the proposed ensemble framework of SVMs." @default.
- W3000205767 created "2020-01-23" @default.
- W3000205767 creator A5003183751 @default.
- W3000205767 creator A5043016512 @default.
- W3000205767 creator A5051074074 @default.
- W3000205767 creator A5059722188 @default.
- W3000205767 date "2021-10-01" @default.
- W3000205767 modified "2023-10-16" @default.
- W3000205767 title "Formulating Ensemble Learning of SVMs Into a Single SVM Formulation by Negative Agreement Learning" @default.
- W3000205767 cites W1584252140 @default.
- W3000205767 cites W1596717185 @default.
- W3000205767 cites W1605688901 @default.
- W3000205767 cites W1970212603 @default.
- W3000205767 cites W1974978265 @default.
- W3000205767 cites W1979263106 @default.
- W3000205767 cites W1999946446 @default.
- W3000205767 cites W2001619934 @default.
- W3000205767 cites W2008344458 @default.
- W3000205767 cites W2011691646 @default.
- W3000205767 cites W2020853859 @default.
- W3000205767 cites W2027090091 @default.
- W3000205767 cites W2027393881 @default.
- W3000205767 cites W2058307353 @default.
- W3000205767 cites W2080693688 @default.
- W3000205767 cites W2084481407 @default.
- W3000205767 cites W2087347434 @default.
- W3000205767 cites W2101629643 @default.
- W3000205767 cites W2113242816 @default.
- W3000205767 cites W2129023315 @default.
- W3000205767 cites W2136256517 @default.
- W3000205767 cites W2140785063 @default.
- W3000205767 cites W2141434237 @default.
- W3000205767 cites W2152119085 @default.
- W3000205767 cites W2158896888 @default.
- W3000205767 cites W2518845577 @default.
- W3000205767 cites W2523506879 @default.
- W3000205767 cites W2523525429 @default.
- W3000205767 cites W2738226240 @default.
- W3000205767 cites W2741692041 @default.
- W3000205767 cites W2755477492 @default.
- W3000205767 cites W2775259072 @default.
- W3000205767 cites W2797503983 @default.
- W3000205767 cites W2797554143 @default.
- W3000205767 cites W2890137519 @default.
- W3000205767 cites W2892374186 @default.
- W3000205767 cites W2908578648 @default.
- W3000205767 cites W2911964244 @default.
- W3000205767 cites W2948282865 @default.
- W3000205767 cites W2963286056 @default.
- W3000205767 cites W2963566548 @default.
- W3000205767 cites W3004732066 @default.
- W3000205767 cites W4212883601 @default.
- W3000205767 cites W4232478844 @default.
- W3000205767 cites W4251708881 @default.
- W3000205767 doi "https://doi.org/10.1109/tsmc.2019.2958647" @default.
- W3000205767 hasPublicationYear "2021" @default.
- W3000205767 type Work @default.
- W3000205767 sameAs 3000205767 @default.
- W3000205767 citedByCount "8" @default.
- W3000205767 countsByYear W30002057672020 @default.
- W3000205767 countsByYear W30002057672022 @default.
- W3000205767 countsByYear W30002057672023 @default.
- W3000205767 crossrefType "journal-article" @default.
- W3000205767 hasAuthorship W3000205767A5003183751 @default.
- W3000205767 hasAuthorship W3000205767A5043016512 @default.
- W3000205767 hasAuthorship W3000205767A5051074074 @default.
- W3000205767 hasAuthorship W3000205767A5059722188 @default.
- W3000205767 hasConcept C119857082 @default.
- W3000205767 hasConcept C12267149 @default.
- W3000205767 hasConcept C153180895 @default.
- W3000205767 hasConcept C154945302 @default.
- W3000205767 hasConcept C41008148 @default.
- W3000205767 hasConcept C45942800 @default.
- W3000205767 hasConceptScore W3000205767C119857082 @default.
- W3000205767 hasConceptScore W3000205767C12267149 @default.
- W3000205767 hasConceptScore W3000205767C153180895 @default.
- W3000205767 hasConceptScore W3000205767C154945302 @default.
- W3000205767 hasConceptScore W3000205767C41008148 @default.
- W3000205767 hasConceptScore W3000205767C45942800 @default.
- W3000205767 hasFunder F4320321001 @default.
- W3000205767 hasFunder F4320322598 @default.
- W3000205767 hasFunder F4320322769 @default.
- W3000205767 hasFunder F4320335787 @default.
- W3000205767 hasIssue "10" @default.
- W3000205767 hasLocation W30002057671 @default.
- W3000205767 hasOpenAccess W3000205767 @default.
- W3000205767 hasPrimaryLocation W30002057671 @default.
- W3000205767 hasRelatedWork W2041399278 @default.
- W3000205767 hasRelatedWork W2099369243 @default.
- W3000205767 hasRelatedWork W2120008580 @default.
- W3000205767 hasRelatedWork W2136184105 @default.
- W3000205767 hasRelatedWork W3136979370 @default.
- W3000205767 hasRelatedWork W3194539120 @default.
- W3000205767 hasRelatedWork W3217110323 @default.
- W3000205767 hasRelatedWork W4205958290 @default.
- W3000205767 hasRelatedWork W4223656335 @default.
- W3000205767 hasRelatedWork W2345184372 @default.
- W3000205767 hasVolume "51" @default.