Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000255265> ?p ?o ?g. }
- W3000255265 endingPage "4924" @default.
- W3000255265 startingPage "4914" @default.
- W3000255265 abstract "In this paper, the Fourier-Bessel series expansion based empirical wavelet transform (FBSE-EWT) is proposed for automated alcoholism detection using electroencephalogram (EEG) signals. The FBSE-EWT is applied to decompose EEG signals into narrow sub-band signals using a boundary detection approach. The accumulated line length, log energy entropy, and norm entropy features are extracted from different frequency scales of narrow sub-band signals. A total of twenty features are extracted from each attribute and out of which ten features are from low to high frequency sub-band signals and other ten features are from high to low frequency sub-band signals. In order to reduce the classification model complexity, the most significant features are selected using feature selection techniques. Six feature ranking methods such as Relief-F, t-test, Chi-test, relief attribute evaluation, correlation attribute evaluation, and gain ratio are used to select the most common features based on the majority voting technique. Experiments are performed by considering top ranked 5, 10, 15, and 20 features and classification methods such as least square support vector machine (LS-SVM), support vector machine (SVM), and k nearest neighbor (k-NN) classifiers. The training and testing is done using leave-one out cross-validation (LOOCV) in order to avoid over-fitting. The performances of classifiers are evaluated using accuracy, sensitivity, and specificity measures. The results suggest that LS-SVM with radial basis function (RBF) kernel achieves a highest average accuracy of 98.8%, sensitivity of 98.3%, and specificity of 99.1% with top 20 significant features." @default.
- W3000255265 created "2020-01-23" @default.
- W3000255265 creator A5011070228 @default.
- W3000255265 creator A5013636671 @default.
- W3000255265 creator A5030314469 @default.
- W3000255265 date "2020-05-01" @default.
- W3000255265 modified "2023-10-01" @default.
- W3000255265 title "Automated Alcoholism Detection Using Fourier-Bessel Series Expansion Based Empirical Wavelet Transform" @default.
- W3000255265 cites W1204938761 @default.
- W3000255265 cites W1971538215 @default.
- W3000255265 cites W1973412776 @default.
- W3000255265 cites W1975235033 @default.
- W3000255265 cites W1984802288 @default.
- W3000255265 cites W1994422401 @default.
- W3000255265 cites W1996183177 @default.
- W3000255265 cites W1998302204 @default.
- W3000255265 cites W1999928587 @default.
- W3000255265 cites W2019900743 @default.
- W3000255265 cites W2033991357 @default.
- W3000255265 cites W2037500757 @default.
- W3000255265 cites W2039242523 @default.
- W3000255265 cites W2082669539 @default.
- W3000255265 cites W2093561300 @default.
- W3000255265 cites W2097002922 @default.
- W3000255265 cites W2114723491 @default.
- W3000255265 cites W2143776609 @default.
- W3000255265 cites W2149233124 @default.
- W3000255265 cites W2165739295 @default.
- W3000255265 cites W2260395597 @default.
- W3000255265 cites W2330025265 @default.
- W3000255265 cites W2519242446 @default.
- W3000255265 cites W2548632986 @default.
- W3000255265 cites W2554037086 @default.
- W3000255265 cites W2556777653 @default.
- W3000255265 cites W2568407436 @default.
- W3000255265 cites W2603490707 @default.
- W3000255265 cites W2783261013 @default.
- W3000255265 cites W2790222081 @default.
- W3000255265 cites W2791015596 @default.
- W3000255265 cites W2792295722 @default.
- W3000255265 cites W2886554103 @default.
- W3000255265 cites W2886603823 @default.
- W3000255265 cites W2886785490 @default.
- W3000255265 cites W2899459625 @default.
- W3000255265 cites W2899707296 @default.
- W3000255265 cites W2904640636 @default.
- W3000255265 cites W2913961150 @default.
- W3000255265 cites W2914231497 @default.
- W3000255265 cites W2920125235 @default.
- W3000255265 cites W2926387750 @default.
- W3000255265 cites W2927852557 @default.
- W3000255265 cites W2933246980 @default.
- W3000255265 cites W2934738796 @default.
- W3000255265 cites W2951758041 @default.
- W3000255265 cites W2954077523 @default.
- W3000255265 cites W2955989361 @default.
- W3000255265 cites W2968315492 @default.
- W3000255265 cites W4237975293 @default.
- W3000255265 cites W4239510810 @default.
- W3000255265 cites W4255272544 @default.
- W3000255265 cites W4293107615 @default.
- W3000255265 doi "https://doi.org/10.1109/jsen.2020.2966766" @default.
- W3000255265 hasPublicationYear "2020" @default.
- W3000255265 type Work @default.
- W3000255265 sameAs 3000255265 @default.
- W3000255265 citedByCount "31" @default.
- W3000255265 countsByYear W30002552652020 @default.
- W3000255265 countsByYear W30002552652021 @default.
- W3000255265 countsByYear W30002552652022 @default.
- W3000255265 countsByYear W30002552652023 @default.
- W3000255265 crossrefType "journal-article" @default.
- W3000255265 hasAuthorship W3000255265A5011070228 @default.
- W3000255265 hasAuthorship W3000255265A5013636671 @default.
- W3000255265 hasAuthorship W3000255265A5030314469 @default.
- W3000255265 hasConcept C105795698 @default.
- W3000255265 hasConcept C106301342 @default.
- W3000255265 hasConcept C121332964 @default.
- W3000255265 hasConcept C12267149 @default.
- W3000255265 hasConcept C148483581 @default.
- W3000255265 hasConcept C153180895 @default.
- W3000255265 hasConcept C154945302 @default.
- W3000255265 hasConcept C186370098 @default.
- W3000255265 hasConcept C196216189 @default.
- W3000255265 hasConcept C25570617 @default.
- W3000255265 hasConcept C33923547 @default.
- W3000255265 hasConcept C41008148 @default.
- W3000255265 hasConcept C47432892 @default.
- W3000255265 hasConcept C50644808 @default.
- W3000255265 hasConcept C52622490 @default.
- W3000255265 hasConcept C62520636 @default.
- W3000255265 hasConcept C98856871 @default.
- W3000255265 hasConceptScore W3000255265C105795698 @default.
- W3000255265 hasConceptScore W3000255265C106301342 @default.
- W3000255265 hasConceptScore W3000255265C121332964 @default.
- W3000255265 hasConceptScore W3000255265C12267149 @default.
- W3000255265 hasConceptScore W3000255265C148483581 @default.
- W3000255265 hasConceptScore W3000255265C153180895 @default.
- W3000255265 hasConceptScore W3000255265C154945302 @default.