Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000289178> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3000289178 abstract "In this paper a machine learning algorithm based on neural networks is proposed. The aim is to test a model for multiphase flow rates estimation, taking into consideration the process parameters and the performance of the installed equipment. This model can work in parallel with the Multiphase Flow Meter (MPFM) measurements or acts as a back-up when it fails or it is not present. The model mainly consists in a multilayer feed-forward neural network, suitable for non-linear regression problems such as the one here considered. The model solution takes a set of reservoir and process parameters as inputs and returns a set of fluid flow information as outputs. The model is trained using actual well test data from producing wells. Generalization and network complexity are regulated using cross-validation. In addition, the mean square error is used as the performance function for training the feed-forward neural network. The predictive capabilities of the neural network for estimating oil and gas flow rates in multiphase production wells have been assessed against field measurements collected from several production wells operating in west Africa. The developed machine learning model shows promising results and a high level of accuracy, with predicted output very close to the actual MPFM measurements for oil and gas flow rates for specific data considered in the present analyses. Thus, the model can be applied to predict multiphase flow rates in different wells and acts as a back-up when MPFM fails or is not present. The great advantage provided by this model is its inherent simplicity and the small computational time taken to provide an output. Therefore, it can also be thought as a valid alternative to virtual flow metering techniques that are based on physical models and are highly dependent on variables with a high degree of uncertainty (e.g. fluid properties). This work presents a promisingapproach for virtual metering technique. The methodology has possible application in real time monitoring but also in production optimization, production allocation and reservoir management and it is a cheaper alternative with respect to MPFM, reducing in this way operational and maintenance costs." @default.
- W3000289178 created "2020-01-23" @default.
- W3000289178 creator A5009083751 @default.
- W3000289178 creator A5016166189 @default.
- W3000289178 creator A5028848638 @default.
- W3000289178 creator A5056746943 @default.
- W3000289178 creator A5086928070 @default.
- W3000289178 date "2020-01-13" @default.
- W3000289178 modified "2023-10-16" @default.
- W3000289178 title "Virtual Metering and Allocation using Machine Learning Algorithms" @default.
- W3000289178 cites W2006544565 @default.
- W3000289178 cites W2488544472 @default.
- W3000289178 doi "https://doi.org/10.2523/iptc-20185-ms" @default.
- W3000289178 hasPublicationYear "2020" @default.
- W3000289178 type Work @default.
- W3000289178 sameAs 3000289178 @default.
- W3000289178 citedByCount "3" @default.
- W3000289178 countsByYear W30002891782020 @default.
- W3000289178 countsByYear W30002891782021 @default.
- W3000289178 crossrefType "proceedings-article" @default.
- W3000289178 hasAuthorship W3000289178A5009083751 @default.
- W3000289178 hasAuthorship W3000289178A5016166189 @default.
- W3000289178 hasAuthorship W3000289178A5028848638 @default.
- W3000289178 hasAuthorship W3000289178A5056746943 @default.
- W3000289178 hasAuthorship W3000289178A5086928070 @default.
- W3000289178 hasConcept C111919701 @default.
- W3000289178 hasConcept C11413529 @default.
- W3000289178 hasConcept C119857082 @default.
- W3000289178 hasConcept C121332964 @default.
- W3000289178 hasConcept C127413603 @default.
- W3000289178 hasConcept C134306372 @default.
- W3000289178 hasConcept C154945302 @default.
- W3000289178 hasConcept C169903167 @default.
- W3000289178 hasConcept C177148314 @default.
- W3000289178 hasConcept C2524010 @default.
- W3000289178 hasConcept C2779379648 @default.
- W3000289178 hasConcept C30905978 @default.
- W3000289178 hasConcept C33923547 @default.
- W3000289178 hasConcept C38349280 @default.
- W3000289178 hasConcept C41008148 @default.
- W3000289178 hasConcept C50644808 @default.
- W3000289178 hasConcept C62520636 @default.
- W3000289178 hasConcept C78519656 @default.
- W3000289178 hasConcept C98045186 @default.
- W3000289178 hasConceptScore W3000289178C111919701 @default.
- W3000289178 hasConceptScore W3000289178C11413529 @default.
- W3000289178 hasConceptScore W3000289178C119857082 @default.
- W3000289178 hasConceptScore W3000289178C121332964 @default.
- W3000289178 hasConceptScore W3000289178C127413603 @default.
- W3000289178 hasConceptScore W3000289178C134306372 @default.
- W3000289178 hasConceptScore W3000289178C154945302 @default.
- W3000289178 hasConceptScore W3000289178C169903167 @default.
- W3000289178 hasConceptScore W3000289178C177148314 @default.
- W3000289178 hasConceptScore W3000289178C2524010 @default.
- W3000289178 hasConceptScore W3000289178C2779379648 @default.
- W3000289178 hasConceptScore W3000289178C30905978 @default.
- W3000289178 hasConceptScore W3000289178C33923547 @default.
- W3000289178 hasConceptScore W3000289178C38349280 @default.
- W3000289178 hasConceptScore W3000289178C41008148 @default.
- W3000289178 hasConceptScore W3000289178C50644808 @default.
- W3000289178 hasConceptScore W3000289178C62520636 @default.
- W3000289178 hasConceptScore W3000289178C78519656 @default.
- W3000289178 hasConceptScore W3000289178C98045186 @default.
- W3000289178 hasLocation W30002891781 @default.
- W3000289178 hasOpenAccess W3000289178 @default.
- W3000289178 hasPrimaryLocation W30002891781 @default.
- W3000289178 hasRelatedWork W2054457760 @default.
- W3000289178 hasRelatedWork W2082239223 @default.
- W3000289178 hasRelatedWork W2351145417 @default.
- W3000289178 hasRelatedWork W2360352189 @default.
- W3000289178 hasRelatedWork W2366499250 @default.
- W3000289178 hasRelatedWork W2372073394 @default.
- W3000289178 hasRelatedWork W2377181419 @default.
- W3000289178 hasRelatedWork W2384104878 @default.
- W3000289178 hasRelatedWork W4288765096 @default.
- W3000289178 hasRelatedWork W4382774707 @default.
- W3000289178 isParatext "false" @default.
- W3000289178 isRetracted "false" @default.
- W3000289178 magId "3000289178" @default.
- W3000289178 workType "article" @default.