Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000401156> ?p ?o ?g. }
- W3000401156 endingPage "635" @default.
- W3000401156 startingPage "635" @default.
- W3000401156 abstract "In this study, the ilmenite content in beach placer sand was estimated using seven soft computing techniques, namely random forest (RF), artificial neural network (ANN), k-nearest neighbors (kNN), cubist, support vector machine (SVM), stochastic gradient boosting (SGB), and classification and regression tree (CART). The 405 beach placer borehole samples were collected from Southern Suoi Nhum deposit, Binh Thuan province, Vietnam, to test the feasibility of these soft computing techniques in estimating ilmenite content. Heavy mineral analysis indicated that valuable minerals in the placer sand are zircon, ilmenite, leucoxene, rutile, anatase, and monazite. In this study, five materials, namely rutile, anatase, leucoxene, zircon, and monazite, were used as the input variables to estimate ilmenite content based on the above mentioned soft computing models. Of the whole dataset, 325 samples were used to build the regarded soft computing models; 80 remaining samples were used for the models’ verification. Root-mean-squared error (RMSE), determination coefficient (R2), a simple ranking method, and residuals analysis technique were used as the statistical criteria for assessing the model performances. The numerical experiments revealed that soft computing techniques are capable of estimating the content of ilmenite with high accuracy. The residuals analysis also indicated that the SGB model was the most suitable for determining the ilmenite content in the context of this research." @default.
- W3000401156 created "2020-01-23" @default.
- W3000401156 creator A5053998535 @default.
- W3000401156 creator A5064619766 @default.
- W3000401156 creator A5075393375 @default.
- W3000401156 creator A5076488485 @default.
- W3000401156 creator A5080411341 @default.
- W3000401156 creator A5081665504 @default.
- W3000401156 creator A5089159821 @default.
- W3000401156 creator A5090728897 @default.
- W3000401156 date "2020-01-16" @default.
- W3000401156 modified "2023-10-14" @default.
- W3000401156 title "A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer" @default.
- W3000401156 cites W1678356000 @default.
- W3000401156 cites W171525035 @default.
- W3000401156 cites W1840208138 @default.
- W3000401156 cites W1920344448 @default.
- W3000401156 cites W1949491125 @default.
- W3000401156 cites W1967697497 @default.
- W3000401156 cites W1971891346 @default.
- W3000401156 cites W1996835951 @default.
- W3000401156 cites W2005055640 @default.
- W3000401156 cites W2024985365 @default.
- W3000401156 cites W2028640249 @default.
- W3000401156 cites W2030404954 @default.
- W3000401156 cites W2044451649 @default.
- W3000401156 cites W2048708177 @default.
- W3000401156 cites W2059779044 @default.
- W3000401156 cites W2062913033 @default.
- W3000401156 cites W2070493638 @default.
- W3000401156 cites W2074009903 @default.
- W3000401156 cites W2091362974 @default.
- W3000401156 cites W2099534828 @default.
- W3000401156 cites W2178486833 @default.
- W3000401156 cites W2473904595 @default.
- W3000401156 cites W2474127707 @default.
- W3000401156 cites W2517531267 @default.
- W3000401156 cites W2562147787 @default.
- W3000401156 cites W2568279454 @default.
- W3000401156 cites W2589780155 @default.
- W3000401156 cites W2596255478 @default.
- W3000401156 cites W2629464472 @default.
- W3000401156 cites W2662240413 @default.
- W3000401156 cites W2747895175 @default.
- W3000401156 cites W2755110721 @default.
- W3000401156 cites W2767155774 @default.
- W3000401156 cites W2768643127 @default.
- W3000401156 cites W2775521641 @default.
- W3000401156 cites W2781562785 @default.
- W3000401156 cites W2791150000 @default.
- W3000401156 cites W2795819125 @default.
- W3000401156 cites W2863229055 @default.
- W3000401156 cites W2884486887 @default.
- W3000401156 cites W2887470299 @default.
- W3000401156 cites W2890980398 @default.
- W3000401156 cites W2895196240 @default.
- W3000401156 cites W2900126700 @default.
- W3000401156 cites W2911964244 @default.
- W3000401156 cites W2912599891 @default.
- W3000401156 cites W2913340792 @default.
- W3000401156 cites W2915343006 @default.
- W3000401156 cites W2915436067 @default.
- W3000401156 cites W2918736446 @default.
- W3000401156 cites W2918879747 @default.
- W3000401156 cites W2919254617 @default.
- W3000401156 cites W2920641855 @default.
- W3000401156 cites W2921482850 @default.
- W3000401156 cites W2921770052 @default.
- W3000401156 cites W2924231381 @default.
- W3000401156 cites W2954891873 @default.
- W3000401156 cites W2960152578 @default.
- W3000401156 cites W2973218737 @default.
- W3000401156 cites W3101584733 @default.
- W3000401156 cites W4239510810 @default.
- W3000401156 cites W4297957988 @default.
- W3000401156 cites W4301058135 @default.
- W3000401156 cites W598667868 @default.
- W3000401156 doi "https://doi.org/10.3390/app10020635" @default.
- W3000401156 hasPublicationYear "2020" @default.
- W3000401156 type Work @default.
- W3000401156 sameAs 3000401156 @default.
- W3000401156 citedByCount "18" @default.
- W3000401156 countsByYear W30004011562020 @default.
- W3000401156 countsByYear W30004011562021 @default.
- W3000401156 countsByYear W30004011562022 @default.
- W3000401156 countsByYear W30004011562023 @default.
- W3000401156 crossrefType "journal-article" @default.
- W3000401156 hasAuthorship W3000401156A5053998535 @default.
- W3000401156 hasAuthorship W3000401156A5064619766 @default.
- W3000401156 hasAuthorship W3000401156A5075393375 @default.
- W3000401156 hasAuthorship W3000401156A5076488485 @default.
- W3000401156 hasAuthorship W3000401156A5080411341 @default.
- W3000401156 hasAuthorship W3000401156A5081665504 @default.
- W3000401156 hasAuthorship W3000401156A5089159821 @default.
- W3000401156 hasAuthorship W3000401156A5090728897 @default.
- W3000401156 hasBestOaLocation W30004011561 @default.
- W3000401156 hasConcept C11413529 @default.
- W3000401156 hasConcept C119857082 @default.