Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000428847> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3000428847 abstract "Missing data imputation is an essential preprocessing step in clinical survey data mining applications. Rough set imputation is one way to handle missing data. A major advantage of using rough sets is that only the information presented in the dataset itself is sufficient to perform the analysis. Hence, no additional information, external parameters, models, functions, grades, or subjective interpretations are necessary. While there are several studies on rough set data imputation, none has been conducted to measure the effect of such imputation on prediction. In this paper, we generate several simulation datasets based on an existing epidemiological dataset (MESA) to perform such study. To measure how well each dataset lends itself to the prediction model, we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model and they both turned out to be significant (p-value < 0.05). In addition, the Wald score shows a better fit for the imputed compared to non-imputed datasets. The average confidence interval width was decreased by 10.4% when the imputed dataset was used, i.e. higher precision was achieved. The results show that using the rough set method for missing data imputation on MESA data improves the predictive capability. Further studies are required to generalize this conclusion to other clinical survey datasets." @default.
- W3000428847 created "2020-01-23" @default.
- W3000428847 creator A5008915640 @default.
- W3000428847 creator A5018035872 @default.
- W3000428847 creator A5055878057 @default.
- W3000428847 creator A5074832035 @default.
- W3000428847 creator A5074989358 @default.
- W3000428847 date "2019-11-01" @default.
- W3000428847 modified "2023-09-25" @default.
- W3000428847 title "Effect of Missing Data Imputation on Prediction of Urinary Incontinence" @default.
- W3000428847 cites W1761675769 @default.
- W3000428847 cites W2039839421 @default.
- W3000428847 cites W2094526177 @default.
- W3000428847 cites W2122904721 @default.
- W3000428847 cites W2132193998 @default.
- W3000428847 cites W310707043 @default.
- W3000428847 doi "https://doi.org/10.1109/icdmw.2019.00134" @default.
- W3000428847 hasPublicationYear "2019" @default.
- W3000428847 type Work @default.
- W3000428847 sameAs 3000428847 @default.
- W3000428847 citedByCount "0" @default.
- W3000428847 crossrefType "proceedings-article" @default.
- W3000428847 hasAuthorship W3000428847A5008915640 @default.
- W3000428847 hasAuthorship W3000428847A5018035872 @default.
- W3000428847 hasAuthorship W3000428847A5055878057 @default.
- W3000428847 hasAuthorship W3000428847A5074832035 @default.
- W3000428847 hasAuthorship W3000428847A5074989358 @default.
- W3000428847 hasConcept C10551718 @default.
- W3000428847 hasConcept C105795698 @default.
- W3000428847 hasConcept C111012933 @default.
- W3000428847 hasConcept C119857082 @default.
- W3000428847 hasConcept C124101348 @default.
- W3000428847 hasConcept C154945302 @default.
- W3000428847 hasConcept C33923547 @default.
- W3000428847 hasConcept C34736171 @default.
- W3000428847 hasConcept C41008148 @default.
- W3000428847 hasConcept C44249647 @default.
- W3000428847 hasConcept C58041806 @default.
- W3000428847 hasConcept C58489278 @default.
- W3000428847 hasConcept C9357733 @default.
- W3000428847 hasConceptScore W3000428847C10551718 @default.
- W3000428847 hasConceptScore W3000428847C105795698 @default.
- W3000428847 hasConceptScore W3000428847C111012933 @default.
- W3000428847 hasConceptScore W3000428847C119857082 @default.
- W3000428847 hasConceptScore W3000428847C124101348 @default.
- W3000428847 hasConceptScore W3000428847C154945302 @default.
- W3000428847 hasConceptScore W3000428847C33923547 @default.
- W3000428847 hasConceptScore W3000428847C34736171 @default.
- W3000428847 hasConceptScore W3000428847C41008148 @default.
- W3000428847 hasConceptScore W3000428847C44249647 @default.
- W3000428847 hasConceptScore W3000428847C58041806 @default.
- W3000428847 hasConceptScore W3000428847C58489278 @default.
- W3000428847 hasConceptScore W3000428847C9357733 @default.
- W3000428847 hasLocation W30004288471 @default.
- W3000428847 hasOpenAccess W3000428847 @default.
- W3000428847 hasPrimaryLocation W30004288471 @default.
- W3000428847 hasRelatedWork W1911131141 @default.
- W3000428847 hasRelatedWork W1990086013 @default.
- W3000428847 hasRelatedWork W2109887329 @default.
- W3000428847 hasRelatedWork W2299163706 @default.
- W3000428847 hasRelatedWork W2626095066 @default.
- W3000428847 hasRelatedWork W2786123035 @default.
- W3000428847 hasRelatedWork W2819873736 @default.
- W3000428847 hasRelatedWork W2907678651 @default.
- W3000428847 hasRelatedWork W2943198600 @default.
- W3000428847 hasRelatedWork W2974141516 @default.
- W3000428847 hasRelatedWork W2988289804 @default.
- W3000428847 hasRelatedWork W3018280962 @default.
- W3000428847 hasRelatedWork W3096847176 @default.
- W3000428847 hasRelatedWork W3128751343 @default.
- W3000428847 hasRelatedWork W3132651209 @default.
- W3000428847 hasRelatedWork W3134785353 @default.
- W3000428847 hasRelatedWork W3158906450 @default.
- W3000428847 hasRelatedWork W3204829752 @default.
- W3000428847 hasRelatedWork W432289053 @default.
- W3000428847 hasRelatedWork W2547400198 @default.
- W3000428847 isParatext "false" @default.
- W3000428847 isRetracted "false" @default.
- W3000428847 magId "3000428847" @default.
- W3000428847 workType "article" @default.