Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000431906> ?p ?o ?g. }
- W3000431906 endingPage "1580" @default.
- W3000431906 startingPage "1564" @default.
- W3000431906 abstract "The swelling of shale and coal induced by the CO2-enhanced gas recovery (CO2-EGR) has proved to reduce the reservoir permeability and the CH4 production. In this work, we have studied the adsorption-induced deformation of the organic carbon slit micropores during the displacement of CH4 by the injected CO2 using grand canonical Monte Carlo simulation. Particularly, we have investigated the effect of the injected CO2 ratio on the deformation strain for each pore width from 0.5 to 2.0 nm under a series of pressures and temperatures. The results showed that the pore deformation is distinct depending on the pore size and the injected CO2 ratio, which generally includes monotonic swelling and shrinkage followed by swelling with bulk pressure. The pores below 0.55 nm have no deformation, as these pores are too narrow for both CH4 and CO2. The maximum swelling in CO2-EGR occurs in the 0.55–0.59 nm pores, which contributes most in terms of the CO2 storage but has no contribution to CH4 recovery. The maximum shrinkage happens in the 0.66 nm pore, which provides most to the CH4 recovery. Besides, the maximum swelling and shrinkage is generally not affected by the CO2 ratio except the deformation at low pressures and even a small amount of CO2 injection could induce the maximum swelling for the corresponding pores in shale or coal. The bulk pressure has a more significant effect on the deformation of the 0.75–1.05 nm pores with the increase of CO2 ratio, and the pore width for the maximum swelling decreases with the increase of pressure. At 100 MPa, a second minor peak of swelling and shrinkage occurs in the 0.85–0.9 and 0.95–1.05 nm pores, respectively. Furthermore, temperature has no effect on the maximum swelling at 100 MPa,but the overall deformation generally decreases with the increase of temperature including the maximum shrinkage. The 1.4–2.0 nm pores only have slight deformation regardless of the CO2 ratio, pressure, and temperature. It is also found that the solvation pressure is the driving force for the deformation irrespective of the adsorbed gas species. However, the adsorbed CH4 and CO2 molecules exert different solvation pressures to the pores during the competitive adsorption. The local solvation pressure is heterogeneous across the pore space for both CH4 and CO2. The positive pressures are close to the pore walls, which tend to swell the pores, but negative pressures are in the pore interior, which incline to contract the pore." @default.
- W3000431906 created "2020-01-23" @default.
- W3000431906 creator A5018348928 @default.
- W3000431906 creator A5058552686 @default.
- W3000431906 creator A5089413218 @default.
- W3000431906 creator A5004569595 @default.
- W3000431906 creator A5070084014 @default.
- W3000431906 date "2020-01-17" @default.
- W3000431906 modified "2023-10-03" @default.
- W3000431906 title "Deformation of Shale and Coal Organic Carbon Slit Micropores Induced by CO<sub>2</sub>-Enhanced Gas Recovery: A Monte Carlo Simulation Study" @default.
- W3000431906 cites W1059499822 @default.
- W3000431906 cites W1222111778 @default.
- W3000431906 cites W1963784342 @default.
- W3000431906 cites W1968349054 @default.
- W3000431906 cites W1970255641 @default.
- W3000431906 cites W1977238062 @default.
- W3000431906 cites W1978349332 @default.
- W3000431906 cites W1984580808 @default.
- W3000431906 cites W1991329478 @default.
- W3000431906 cites W2003513223 @default.
- W3000431906 cites W2005681759 @default.
- W3000431906 cites W2009132790 @default.
- W3000431906 cites W2010888239 @default.
- W3000431906 cites W2012257952 @default.
- W3000431906 cites W2012573085 @default.
- W3000431906 cites W2014280435 @default.
- W3000431906 cites W2015040785 @default.
- W3000431906 cites W2015108049 @default.
- W3000431906 cites W2017368952 @default.
- W3000431906 cites W2018841066 @default.
- W3000431906 cites W2023293590 @default.
- W3000431906 cites W2028888408 @default.
- W3000431906 cites W2029268427 @default.
- W3000431906 cites W2029901361 @default.
- W3000431906 cites W2045494647 @default.
- W3000431906 cites W2047235889 @default.
- W3000431906 cites W2048462006 @default.
- W3000431906 cites W2049457092 @default.
- W3000431906 cites W2050741094 @default.
- W3000431906 cites W2053413319 @default.
- W3000431906 cites W2059256737 @default.
- W3000431906 cites W2065316249 @default.
- W3000431906 cites W2067772197 @default.
- W3000431906 cites W2071277175 @default.
- W3000431906 cites W2074201746 @default.
- W3000431906 cites W2078402834 @default.
- W3000431906 cites W2078837236 @default.
- W3000431906 cites W2089721687 @default.
- W3000431906 cites W2090165479 @default.
- W3000431906 cites W2118902241 @default.
- W3000431906 cites W2119102259 @default.
- W3000431906 cites W2123286193 @default.
- W3000431906 cites W2126387283 @default.
- W3000431906 cites W2156454985 @default.
- W3000431906 cites W2169408260 @default.
- W3000431906 cites W2282044795 @default.
- W3000431906 cites W2316237314 @default.
- W3000431906 cites W2324811117 @default.
- W3000431906 cites W2326430166 @default.
- W3000431906 cites W2418368576 @default.
- W3000431906 cites W2519248859 @default.
- W3000431906 cites W2557627134 @default.
- W3000431906 cites W2563186903 @default.
- W3000431906 cites W2607731088 @default.
- W3000431906 cites W2608492023 @default.
- W3000431906 cites W2727701218 @default.
- W3000431906 cites W2740686188 @default.
- W3000431906 cites W2748024781 @default.
- W3000431906 cites W2784252187 @default.
- W3000431906 cites W2788344773 @default.
- W3000431906 cites W2801445500 @default.
- W3000431906 cites W2805597946 @default.
- W3000431906 cites W2866184637 @default.
- W3000431906 cites W2906347867 @default.
- W3000431906 cites W2921341622 @default.
- W3000431906 cites W2940095405 @default.
- W3000431906 cites W2964222604 @default.
- W3000431906 cites W2967092492 @default.
- W3000431906 cites W4239568860 @default.
- W3000431906 cites W72796928 @default.
- W3000431906 doi "https://doi.org/10.1021/acs.energyfuels.9b03687" @default.
- W3000431906 hasPublicationYear "2020" @default.
- W3000431906 type Work @default.
- W3000431906 sameAs 3000431906 @default.
- W3000431906 citedByCount "7" @default.
- W3000431906 countsByYear W30004319062021 @default.
- W3000431906 countsByYear W30004319062022 @default.
- W3000431906 crossrefType "journal-article" @default.
- W3000431906 hasAuthorship W3000431906A5004569595 @default.
- W3000431906 hasAuthorship W3000431906A5018348928 @default.
- W3000431906 hasAuthorship W3000431906A5058552686 @default.
- W3000431906 hasAuthorship W3000431906A5070084014 @default.
- W3000431906 hasAuthorship W3000431906A5089413218 @default.
- W3000431906 hasConcept C104779481 @default.
- W3000431906 hasConcept C127313418 @default.
- W3000431906 hasConcept C127413603 @default.
- W3000431906 hasConcept C140205800 @default.
- W3000431906 hasConcept C150394285 @default.