Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000432261> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3000432261 abstract "The main aim of this dissertation is to prove a version of the result [Bro98, Proposition 2.3], following the outline suggested in that paper. This result has a distinctly homological flavour, and unsurprisingly relies quite heavily on homological algebra for its proof. We have also drawn upon a wider variety of mathematical techniques, mostly ring theory and Hopf algebraic methods in our discussion. As by-products of the proof, we get a condition for Galois extensions and Frobenius extensions to be equivalent, and also a generalisation of a well-known theorem by Larsson and Sweedler. We discuss this in more detail below. We state the proposition: Proposition. We let H he a Noetherian k-Hopf algebra, where k is an algebraically dosed field. Let K he a central affine sub-Hopf algebra of H with inj.dimK(K) = Krull dim(K) = m. Suppose further that H is a finitely generated K-module. Then inj.dimK(K) = Krull dim(K) = m. Throughout this thesis, inj.dim refers to the injective dimension of the module (defined in Definition 3.2) and Krull dim is the Krull dimension of a commutative Noetherian ring which we also define in Definition 3.2. We also note the fact that if a commutative Noetherian ring has finite injective dimension, then inj.dim(-) = Krull dim(-), as above. The proof is split into four parts, which we summarise briefly here. In the first part, we show that for any ring R which is a Frobenius extension over a subring S the injective dimension of S as a module over itself is equal to the injective dimension of R as an 5-module. Proof of this is obtained from Nakayama and Tsuzuku's fundamental paper ([NT60]) and some basic facts about projective modules. In the second part, we prove that, in the notation above, H is Frobenius over K. This requires that we show H to be a Galois extension over K, which requires substantial preparation as discussed in Chapter 2. The key results come from Kreimer and Takeuchi's paper [KT81] and a paper by Schneider [Sch93]. This step also generalises the Larsson and Sweedler result mentioned before, which states that any finite-dimensional Hopf algebra is Erobenius over any sub-Hopf algebra. The third part shows that if is a Gorenstein ring. The fourth part uses some simple facts on projective modules to place the required restriction on the injective dimension of H as an H-module. These steps, taken together, prove the proposition. This proof is contained in the second section of Chapter 4. Chapter 1 is concerned with the basic definition of a Hopf algebra and discusses some of their basic properties, including comodules, invariants and coinvariants, and smash products. We also introduce Sweedler's sigma notation and use it to describe many Hopf algebraic properties. As indicated above. Chapter 2 contains the majority of the results needed to prove the proposition. We begin by defining and discussing normal sub-Hopf algebras and establish two key results which give an if and only if condition for a sub-Hopf algebra to be normal. This forms part of the proof of the proposition. The main point of the chapter, however, is to show that under certain conditions, Galois extensions are equivalent to Frobenius extensions. A key tool in proving this result is the notion of faithful flatness. We are interested in when a Hopf algebra is flat, faithfully flat, or free over a sub-Hopf algebra. There has been a substantial amount of work done in this area, some of which we discuss in detail, especially results by Schneider [Sch93]. This discussion forms the backbone of the chapter and establishes the crucial fact that the conditions in the proposition imply that H is faithfully flat over K. Finally, we discuss a result from Kreimer and Takeuchi's paper, which gives the condition for equivalence between Galois and Frobenius extensions that we require." @default.
- W3000432261 created "2020-01-23" @default.
- W3000432261 creator A5058992964 @default.
- W3000432261 date "2000-01-01" @default.
- W3000432261 modified "2023-09-27" @default.
- W3000432261 title "Homological Properties of Hopf Algebras" @default.
- W3000432261 hasPublicationYear "2000" @default.
- W3000432261 type Work @default.
- W3000432261 sameAs 3000432261 @default.
- W3000432261 citedByCount "0" @default.
- W3000432261 crossrefType "dissertation" @default.
- W3000432261 hasAuthorship W3000432261A5058992964 @default.
- W3000432261 hasConcept C118615104 @default.
- W3000432261 hasConcept C128107574 @default.
- W3000432261 hasConcept C136119220 @default.
- W3000432261 hasConcept C142109727 @default.
- W3000432261 hasConcept C178790620 @default.
- W3000432261 hasConcept C185592680 @default.
- W3000432261 hasConcept C202444582 @default.
- W3000432261 hasConcept C203701370 @default.
- W3000432261 hasConcept C22602557 @default.
- W3000432261 hasConcept C2779057376 @default.
- W3000432261 hasConcept C2780378348 @default.
- W3000432261 hasConcept C29712632 @default.
- W3000432261 hasConcept C33676613 @default.
- W3000432261 hasConcept C33923547 @default.
- W3000432261 hasConcept C46333567 @default.
- W3000432261 hasConcept C95341145 @default.
- W3000432261 hasConcept C96489954 @default.
- W3000432261 hasConceptScore W3000432261C118615104 @default.
- W3000432261 hasConceptScore W3000432261C128107574 @default.
- W3000432261 hasConceptScore W3000432261C136119220 @default.
- W3000432261 hasConceptScore W3000432261C142109727 @default.
- W3000432261 hasConceptScore W3000432261C178790620 @default.
- W3000432261 hasConceptScore W3000432261C185592680 @default.
- W3000432261 hasConceptScore W3000432261C202444582 @default.
- W3000432261 hasConceptScore W3000432261C203701370 @default.
- W3000432261 hasConceptScore W3000432261C22602557 @default.
- W3000432261 hasConceptScore W3000432261C2779057376 @default.
- W3000432261 hasConceptScore W3000432261C2780378348 @default.
- W3000432261 hasConceptScore W3000432261C29712632 @default.
- W3000432261 hasConceptScore W3000432261C33676613 @default.
- W3000432261 hasConceptScore W3000432261C33923547 @default.
- W3000432261 hasConceptScore W3000432261C46333567 @default.
- W3000432261 hasConceptScore W3000432261C95341145 @default.
- W3000432261 hasConceptScore W3000432261C96489954 @default.
- W3000432261 hasLocation W30004322611 @default.
- W3000432261 hasOpenAccess W3000432261 @default.
- W3000432261 hasPrimaryLocation W30004322611 @default.
- W3000432261 hasRelatedWork W1532657797 @default.
- W3000432261 hasRelatedWork W1539823052 @default.
- W3000432261 hasRelatedWork W1634436149 @default.
- W3000432261 hasRelatedWork W1692732625 @default.
- W3000432261 hasRelatedWork W1902693542 @default.
- W3000432261 hasRelatedWork W2013824808 @default.
- W3000432261 hasRelatedWork W2071758548 @default.
- W3000432261 hasRelatedWork W2074462411 @default.
- W3000432261 hasRelatedWork W2094872092 @default.
- W3000432261 hasRelatedWork W2097138755 @default.
- W3000432261 hasRelatedWork W2593412598 @default.
- W3000432261 hasRelatedWork W2733867297 @default.
- W3000432261 hasRelatedWork W2915678888 @default.
- W3000432261 hasRelatedWork W2920839334 @default.
- W3000432261 hasRelatedWork W2949936963 @default.
- W3000432261 hasRelatedWork W3033695649 @default.
- W3000432261 hasRelatedWork W3105187893 @default.
- W3000432261 hasRelatedWork W3184718659 @default.
- W3000432261 hasRelatedWork W787922409 @default.
- W3000432261 hasRelatedWork W3152040395 @default.
- W3000432261 isParatext "false" @default.
- W3000432261 isRetracted "false" @default.
- W3000432261 magId "3000432261" @default.
- W3000432261 workType "dissertation" @default.