Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000448519> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3000448519 abstract "Cancer stands as major cause of mortality in the world, and it's the morbidity has significantly increased in both developing and developed nations. In spite of the recent advancement in cancer therapies, the clinical follow-up still lags far behind.Recent studies show that, stem cells are bestowed with distinctive functions, like tumor cells relocation, immunosuppression and production of bioactive elements, that helps in cancer targeting that bypassobstacles.Recent understanding show that Preclinical stem cell-based strategies has proved potential for targeted anti-tumor therapy applications. Stem cell applications in modulation and remodeling of immune system happens to be frequent procedure used past ten years in successfully treating tumor.Generation of human somatic cells into induced pluripotent stem cells (iPSCs) has often been a time consuming laborious intensive and expensive process. Additionally, the major problem with iPSCs is their tendency to revert to original somatic state. Hence, a robust computational model in discovering genes/molecules necessary for iPSC generation and maintenance can be a major leap towards in stem cell research.The synergistic combination of genetic relationship data, advanced computing hardware and nonlinear algorithms and could make artificially-induced pluripotent stem cells (aiPSC) a near future reality. Genes or proteins that are known to be essential in human pluripotent stem cells (hPSC) could possibly be used for system modelling. The present investigation is aimed to develop an unsupervised deep machine learning technology for the prediction of genes relevant in aiPSC production and its maintenance for both common and rare diseases making it a cost-effective approach." @default.
- W3000448519 created "2020-01-23" @default.
- W3000448519 creator A5041947296 @default.
- W3000448519 creator A5073344317 @default.
- W3000448519 date "2019-11-01" @default.
- W3000448519 modified "2023-09-25" @default.
- W3000448519 title "A Machine learning approach for the prediction of efficient iPSC modeling" @default.
- W3000448519 doi "https://doi.org/10.3390/mol2net-05-06376" @default.
- W3000448519 hasPublicationYear "2019" @default.
- W3000448519 type Work @default.
- W3000448519 sameAs 3000448519 @default.
- W3000448519 citedByCount "0" @default.
- W3000448519 crossrefType "proceedings-article" @default.
- W3000448519 hasAuthorship W3000448519A5041947296 @default.
- W3000448519 hasAuthorship W3000448519A5073344317 @default.
- W3000448519 hasBestOaLocation W30004485191 @default.
- W3000448519 hasConcept C104317684 @default.
- W3000448519 hasConcept C107459253 @default.
- W3000448519 hasConcept C119857082 @default.
- W3000448519 hasConcept C134305767 @default.
- W3000448519 hasConcept C145103041 @default.
- W3000448519 hasConcept C154945302 @default.
- W3000448519 hasConcept C169760540 @default.
- W3000448519 hasConcept C28328180 @default.
- W3000448519 hasConcept C41008148 @default.
- W3000448519 hasConcept C54355233 @default.
- W3000448519 hasConcept C60644358 @default.
- W3000448519 hasConcept C70721500 @default.
- W3000448519 hasConcept C86803240 @default.
- W3000448519 hasConcept C95444343 @default.
- W3000448519 hasConceptScore W3000448519C104317684 @default.
- W3000448519 hasConceptScore W3000448519C107459253 @default.
- W3000448519 hasConceptScore W3000448519C119857082 @default.
- W3000448519 hasConceptScore W3000448519C134305767 @default.
- W3000448519 hasConceptScore W3000448519C145103041 @default.
- W3000448519 hasConceptScore W3000448519C154945302 @default.
- W3000448519 hasConceptScore W3000448519C169760540 @default.
- W3000448519 hasConceptScore W3000448519C28328180 @default.
- W3000448519 hasConceptScore W3000448519C41008148 @default.
- W3000448519 hasConceptScore W3000448519C54355233 @default.
- W3000448519 hasConceptScore W3000448519C60644358 @default.
- W3000448519 hasConceptScore W3000448519C70721500 @default.
- W3000448519 hasConceptScore W3000448519C86803240 @default.
- W3000448519 hasConceptScore W3000448519C95444343 @default.
- W3000448519 hasLocation W30004485191 @default.
- W3000448519 hasOpenAccess W3000448519 @default.
- W3000448519 hasPrimaryLocation W30004485191 @default.
- W3000448519 hasRelatedWork W2002402026 @default.
- W3000448519 hasRelatedWork W2027669322 @default.
- W3000448519 hasRelatedWork W2036926617 @default.
- W3000448519 hasRelatedWork W2109460321 @default.
- W3000448519 hasRelatedWork W2332334063 @default.
- W3000448519 hasRelatedWork W2801102820 @default.
- W3000448519 hasRelatedWork W282382167 @default.
- W3000448519 hasRelatedWork W3029249688 @default.
- W3000448519 hasRelatedWork W3112978617 @default.
- W3000448519 hasRelatedWork W3135361007 @default.
- W3000448519 isParatext "false" @default.
- W3000448519 isRetracted "false" @default.
- W3000448519 magId "3000448519" @default.
- W3000448519 workType "article" @default.