Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000450185> ?p ?o ?g. }
- W3000450185 endingPage "191" @default.
- W3000450185 startingPage "182" @default.
- W3000450185 abstract "Postoperative gastrointestinal leak and venous thromboembolism (VTE) are devastating complications of bariatric surgery. The performance of currently available predictive models for these complications remains wanting, while machine learning has shown promise to improve on traditional modeling approaches. The purpose of this study was to compare the ability of two machine learning strategies, artificial neural networks (ANNs), and gradient boosting machines (XGBs) to conventional models using logistic regression (LR) in predicting leak and VTE after bariatric surgery.ANN, XGB, and LR prediction models for leak and VTE among adults undergoing initial elective weight loss surgery were trained and validated using preoperative data from 2015 to 2017 from Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program database. Data were randomly split into training, validation, and testing populations. Model performance was measured by the area under the receiver operating characteristic curve (AUC) on the testing data for each model.The study cohort contained 436,807 patients. The incidences of leak and VTE were 0.70% and 0.46%. ANN (AUC 0.75, 95% CI 0.73-0.78) was the best-performing model for predicting leak, followed by XGB (AUC 0.70, 95% CI 0.68-0.72) and then LR (AUC 0.63, 95% CI 0.61-0.65, p < 0.001 for all comparisons). In detecting VTE, ANN, and XGB, LR achieved similar AUCs of 0.65 (95% CI 0.63-0.68), 0.67 (95% CI 0.64-0.70), and 0.64 (95% CI 0.61-0.66), respectively; the performance difference between XGB and LR was statistically significant (p = 0.001).ANN and XGB outperformed traditional LR in predicting leak. These results suggest that ML has the potential to improve risk stratification for bariatric surgery, especially as techniques to extract more granular data from medical records improve. Further studies investigating the merits of machine learning to improve patient selection and risk management in bariatric surgery are warranted." @default.
- W3000450185 created "2020-01-23" @default.
- W3000450185 creator A5001511264 @default.
- W3000450185 creator A5014584070 @default.
- W3000450185 creator A5022560600 @default.
- W3000450185 creator A5037105855 @default.
- W3000450185 creator A5067924008 @default.
- W3000450185 creator A5073050136 @default.
- W3000450185 creator A5079065636 @default.
- W3000450185 date "2020-01-17" @default.
- W3000450185 modified "2023-10-17" @default.
- W3000450185 title "Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database" @default.
- W3000450185 cites W1624701774 @default.
- W3000450185 cites W1988054515 @default.
- W3000450185 cites W1988450784 @default.
- W3000450185 cites W2006617902 @default.
- W3000450185 cites W2033228742 @default.
- W3000450185 cites W2041171592 @default.
- W3000450185 cites W2078271269 @default.
- W3000450185 cites W2088794999 @default.
- W3000450185 cites W2110114082 @default.
- W3000450185 cites W2110938858 @default.
- W3000450185 cites W2168804763 @default.
- W3000450185 cites W2171642892 @default.
- W3000450185 cites W2181523240 @default.
- W3000450185 cites W2187505222 @default.
- W3000450185 cites W2294123808 @default.
- W3000450185 cites W2314289689 @default.
- W3000450185 cites W2322434447 @default.
- W3000450185 cites W2328176404 @default.
- W3000450185 cites W2342249984 @default.
- W3000450185 cites W2512971201 @default.
- W3000450185 cites W2542719835 @default.
- W3000450185 cites W2548570154 @default.
- W3000450185 cites W2557266686 @default.
- W3000450185 cites W2580456502 @default.
- W3000450185 cites W2587444411 @default.
- W3000450185 cites W2604475442 @default.
- W3000450185 cites W2611932750 @default.
- W3000450185 cites W2762836337 @default.
- W3000450185 cites W2771622989 @default.
- W3000450185 cites W2784703621 @default.
- W3000450185 cites W2790209545 @default.
- W3000450185 cites W2793121975 @default.
- W3000450185 cites W2795231718 @default.
- W3000450185 cites W2803660715 @default.
- W3000450185 cites W2807593075 @default.
- W3000450185 cites W2808897169 @default.
- W3000450185 cites W2853167595 @default.
- W3000450185 cites W2885408863 @default.
- W3000450185 cites W2888528836 @default.
- W3000450185 cites W2909953525 @default.
- W3000450185 cites W2914536479 @default.
- W3000450185 cites W2919115771 @default.
- W3000450185 cites W2969788568 @default.
- W3000450185 cites W3102476541 @default.
- W3000450185 cites W4246288239 @default.
- W3000450185 cites W4251677500 @default.
- W3000450185 cites W4254687493 @default.
- W3000450185 doi "https://doi.org/10.1007/s00464-020-07378-x" @default.
- W3000450185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31953733" @default.
- W3000450185 hasPublicationYear "2020" @default.
- W3000450185 type Work @default.
- W3000450185 sameAs 3000450185 @default.
- W3000450185 citedByCount "31" @default.
- W3000450185 countsByYear W30004501852020 @default.
- W3000450185 countsByYear W30004501852021 @default.
- W3000450185 countsByYear W30004501852022 @default.
- W3000450185 countsByYear W30004501852023 @default.
- W3000450185 crossrefType "journal-article" @default.
- W3000450185 hasAuthorship W3000450185A5001511264 @default.
- W3000450185 hasAuthorship W3000450185A5014584070 @default.
- W3000450185 hasAuthorship W3000450185A5022560600 @default.
- W3000450185 hasAuthorship W3000450185A5037105855 @default.
- W3000450185 hasAuthorship W3000450185A5067924008 @default.
- W3000450185 hasAuthorship W3000450185A5073050136 @default.
- W3000450185 hasAuthorship W3000450185A5079065636 @default.
- W3000450185 hasBestOaLocation W30004501852 @default.
- W3000450185 hasConcept C126322002 @default.
- W3000450185 hasConcept C127413603 @default.
- W3000450185 hasConcept C141071460 @default.
- W3000450185 hasConcept C151956035 @default.
- W3000450185 hasConcept C2780120127 @default.
- W3000450185 hasConcept C2780378346 @default.
- W3000450185 hasConcept C58471807 @default.
- W3000450185 hasConcept C71924100 @default.
- W3000450185 hasConcept C72563966 @default.
- W3000450185 hasConcept C76318530 @default.
- W3000450185 hasConcept C87717796 @default.
- W3000450185 hasConceptScore W3000450185C126322002 @default.
- W3000450185 hasConceptScore W3000450185C127413603 @default.
- W3000450185 hasConceptScore W3000450185C141071460 @default.
- W3000450185 hasConceptScore W3000450185C151956035 @default.
- W3000450185 hasConceptScore W3000450185C2780120127 @default.
- W3000450185 hasConceptScore W3000450185C2780378346 @default.
- W3000450185 hasConceptScore W3000450185C58471807 @default.
- W3000450185 hasConceptScore W3000450185C71924100 @default.
- W3000450185 hasConceptScore W3000450185C72563966 @default.