Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000454981> ?p ?o ?g. }
- W3000454981 endingPage "104633" @default.
- W3000454981 startingPage "104633" @default.
- W3000454981 abstract "Smart meters installed at the user-level provide a new data source for managing water infrastructure. This research explores the use of machine learning methods, including Random Forests (RFs), Artificial Neural Networks (ANNs), and Support Vector Regression (SVR) to forecast hourly water demand at 90 accounts using smart-metered data. Demands are predicted using lagged demand, seasonality, weather, and household characteristics. Time-series clustering is applied to delineate data based on the time of day and day of the week, which improves model performance. Two modeling approaches are compared. Individual models are developed separately for each meter, and a Group model is trained using a data set of multiple meters. Individual models predict demands at meters in the original data set with lower error than Group models, while the Group model predicts demands at new meters with lower error than Individual models. Results demonstrate that RF and ANN perform better than SVR across all scenarios." @default.
- W3000454981 created "2020-01-23" @default.
- W3000454981 creator A5007318256 @default.
- W3000454981 creator A5016610098 @default.
- W3000454981 creator A5081770291 @default.
- W3000454981 date "2020-03-01" @default.
- W3000454981 modified "2023-10-14" @default.
- W3000454981 title "Smart meters data for modeling and forecasting water demand at the user-level" @default.
- W3000454981 cites W1049614015 @default.
- W3000454981 cites W1262302848 @default.
- W3000454981 cites W1507231250 @default.
- W3000454981 cites W1518635102 @default.
- W3000454981 cites W1529026127 @default.
- W3000454981 cites W1623768750 @default.
- W3000454981 cites W1812222446 @default.
- W3000454981 cites W1964357740 @default.
- W3000454981 cites W1969832861 @default.
- W3000454981 cites W1974853958 @default.
- W3000454981 cites W1985059878 @default.
- W3000454981 cites W1989930380 @default.
- W3000454981 cites W1994687127 @default.
- W3000454981 cites W2001168879 @default.
- W3000454981 cites W2012176250 @default.
- W3000454981 cites W2020538060 @default.
- W3000454981 cites W2021925698 @default.
- W3000454981 cites W2029491261 @default.
- W3000454981 cites W2031027751 @default.
- W3000454981 cites W2056855736 @default.
- W3000454981 cites W2062981820 @default.
- W3000454981 cites W2063456336 @default.
- W3000454981 cites W2065903366 @default.
- W3000454981 cites W2066241904 @default.
- W3000454981 cites W2066657001 @default.
- W3000454981 cites W2067859256 @default.
- W3000454981 cites W2074895072 @default.
- W3000454981 cites W2075419264 @default.
- W3000454981 cites W2077383863 @default.
- W3000454981 cites W2084672879 @default.
- W3000454981 cites W2091191840 @default.
- W3000454981 cites W2112930360 @default.
- W3000454981 cites W2118364057 @default.
- W3000454981 cites W2122722067 @default.
- W3000454981 cites W2135177913 @default.
- W3000454981 cites W2135890205 @default.
- W3000454981 cites W2141909806 @default.
- W3000454981 cites W2150593711 @default.
- W3000454981 cites W2167611291 @default.
- W3000454981 cites W2169055640 @default.
- W3000454981 cites W2285643495 @default.
- W3000454981 cites W2406388864 @default.
- W3000454981 cites W2518710384 @default.
- W3000454981 cites W2567091547 @default.
- W3000454981 cites W2590998531 @default.
- W3000454981 cites W2600845876 @default.
- W3000454981 cites W2603153208 @default.
- W3000454981 cites W2653035286 @default.
- W3000454981 cites W2765714724 @default.
- W3000454981 cites W2778724154 @default.
- W3000454981 cites W2780842280 @default.
- W3000454981 cites W2782647343 @default.
- W3000454981 cites W2789662941 @default.
- W3000454981 cites W2792657176 @default.
- W3000454981 cites W2794188809 @default.
- W3000454981 cites W2797478162 @default.
- W3000454981 cites W2893564989 @default.
- W3000454981 cites W2911964244 @default.
- W3000454981 cites W2920804134 @default.
- W3000454981 cites W2936064258 @default.
- W3000454981 cites W2992428362 @default.
- W3000454981 cites W3015498887 @default.
- W3000454981 cites W4212883601 @default.
- W3000454981 cites W4240967528 @default.
- W3000454981 doi "https://doi.org/10.1016/j.envsoft.2020.104633" @default.
- W3000454981 hasPublicationYear "2020" @default.
- W3000454981 type Work @default.
- W3000454981 sameAs 3000454981 @default.
- W3000454981 citedByCount "49" @default.
- W3000454981 countsByYear W30004549812020 @default.
- W3000454981 countsByYear W30004549812021 @default.
- W3000454981 countsByYear W30004549812022 @default.
- W3000454981 countsByYear W30004549812023 @default.
- W3000454981 crossrefType "journal-article" @default.
- W3000454981 hasAuthorship W3000454981A5007318256 @default.
- W3000454981 hasAuthorship W3000454981A5016610098 @default.
- W3000454981 hasAuthorship W3000454981A5081770291 @default.
- W3000454981 hasConcept C10558101 @default.
- W3000454981 hasConcept C119599485 @default.
- W3000454981 hasConcept C119857082 @default.
- W3000454981 hasConcept C121332964 @default.
- W3000454981 hasConcept C12267149 @default.
- W3000454981 hasConcept C124101348 @default.
- W3000454981 hasConcept C127413603 @default.
- W3000454981 hasConcept C1276947 @default.
- W3000454981 hasConcept C151011524 @default.
- W3000454981 hasConcept C151406439 @default.
- W3000454981 hasConcept C154945302 @default.
- W3000454981 hasConcept C169258074 @default.
- W3000454981 hasConcept C177264268 @default.