Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000471799> ?p ?o ?g. }
- W3000471799 endingPage "16770" @default.
- W3000471799 startingPage "16760" @default.
- W3000471799 abstract "To address the uncertainty caused by integrating wind power into the electricity grid, accurate wind speed forecasting is highly desired. However, historical wind speed data of new wind farms may be insufficient for training a well-performed forecasting model. To address this issue, short-term wind speed forecasting with convolutional neural network (CNN) based on information of neighboring wind farms is studied in this paper. In the proposed approach, the CNN is employed to migrate the intrinsic features of wind speed changes to newly built wind farms. To evaluate the performance of the proposed approach, wind speed data collected from three wind farms in China is utilized and multi-step-ahead forecasting is considered. The computational results prove the proposed approach outperforms benchmarking methods Support Vector Regression, Kernel Ridge Regression, and CNN by only considering data of the target wind farm." @default.
- W3000471799 created "2020-01-23" @default.
- W3000471799 creator A5002190637 @default.
- W3000471799 creator A5014915462 @default.
- W3000471799 creator A5037910108 @default.
- W3000471799 creator A5064109559 @default.
- W3000471799 creator A5070357433 @default.
- W3000471799 date "2020-01-01" @default.
- W3000471799 modified "2023-10-17" @default.
- W3000471799 title "Short-Term Wind Speed Forecasting Based on Information of Neighboring Wind Farms" @default.
- W3000471799 cites W1583817058 @default.
- W3000471799 cites W1964357740 @default.
- W3000471799 cites W1994170512 @default.
- W3000471799 cites W1997962894 @default.
- W3000471799 cites W2016752668 @default.
- W3000471799 cites W2017977879 @default.
- W3000471799 cites W2024692966 @default.
- W3000471799 cites W2058504886 @default.
- W3000471799 cites W2120615054 @default.
- W3000471799 cites W2147800946 @default.
- W3000471799 cites W2165698076 @default.
- W3000471799 cites W2468900667 @default.
- W3000471799 cites W2517756674 @default.
- W3000471799 cites W2581205918 @default.
- W3000471799 cites W2581822685 @default.
- W3000471799 cites W2606817745 @default.
- W3000471799 cites W2607851870 @default.
- W3000471799 cites W2766047633 @default.
- W3000471799 cites W2771979366 @default.
- W3000471799 cites W2774667990 @default.
- W3000471799 cites W2787207349 @default.
- W3000471799 cites W2788378051 @default.
- W3000471799 cites W2790834859 @default.
- W3000471799 cites W2791186434 @default.
- W3000471799 cites W2792616493 @default.
- W3000471799 cites W2793017755 @default.
- W3000471799 cites W2793408387 @default.
- W3000471799 cites W2883931661 @default.
- W3000471799 cites W2884380318 @default.
- W3000471799 cites W2897446518 @default.
- W3000471799 cites W2900921197 @default.
- W3000471799 cites W2905528277 @default.
- W3000471799 cites W2906060253 @default.
- W3000471799 cites W2908182356 @default.
- W3000471799 cites W2910279921 @default.
- W3000471799 cites W2913872388 @default.
- W3000471799 cites W2925057617 @default.
- W3000471799 cites W2938175743 @default.
- W3000471799 cites W2940200036 @default.
- W3000471799 cites W2942937030 @default.
- W3000471799 cites W2962752580 @default.
- W3000471799 cites W2972362771 @default.
- W3000471799 cites W2978631110 @default.
- W3000471799 cites W2981125039 @default.
- W3000471799 cites W2983772465 @default.
- W3000471799 doi "https://doi.org/10.1109/access.2020.2966268" @default.
- W3000471799 hasPublicationYear "2020" @default.
- W3000471799 type Work @default.
- W3000471799 sameAs 3000471799 @default.
- W3000471799 citedByCount "38" @default.
- W3000471799 countsByYear W30004717992020 @default.
- W3000471799 countsByYear W30004717992021 @default.
- W3000471799 countsByYear W30004717992022 @default.
- W3000471799 countsByYear W30004717992023 @default.
- W3000471799 crossrefType "journal-article" @default.
- W3000471799 hasAuthorship W3000471799A5002190637 @default.
- W3000471799 hasAuthorship W3000471799A5014915462 @default.
- W3000471799 hasAuthorship W3000471799A5037910108 @default.
- W3000471799 hasAuthorship W3000471799A5064109559 @default.
- W3000471799 hasAuthorship W3000471799A5070357433 @default.
- W3000471799 hasBestOaLocation W30004717991 @default.
- W3000471799 hasConcept C114614502 @default.
- W3000471799 hasConcept C119599485 @default.
- W3000471799 hasConcept C119857082 @default.
- W3000471799 hasConcept C121332964 @default.
- W3000471799 hasConcept C122282355 @default.
- W3000471799 hasConcept C12267149 @default.
- W3000471799 hasConcept C127413603 @default.
- W3000471799 hasConcept C13280743 @default.
- W3000471799 hasConcept C144133560 @default.
- W3000471799 hasConcept C153294291 @default.
- W3000471799 hasConcept C154945302 @default.
- W3000471799 hasConcept C161067210 @default.
- W3000471799 hasConcept C162853370 @default.
- W3000471799 hasConcept C163258240 @default.
- W3000471799 hasConcept C187691185 @default.
- W3000471799 hasConcept C205649164 @default.
- W3000471799 hasConcept C2781084341 @default.
- W3000471799 hasConcept C33923547 @default.
- W3000471799 hasConcept C41008148 @default.
- W3000471799 hasConcept C49937458 @default.
- W3000471799 hasConcept C61797465 @default.
- W3000471799 hasConcept C62520636 @default.
- W3000471799 hasConcept C74193536 @default.
- W3000471799 hasConcept C78600449 @default.
- W3000471799 hasConcept C81363708 @default.
- W3000471799 hasConcept C86251818 @default.
- W3000471799 hasConcept C89227174 @default.