Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000483774> ?p ?o ?g. }
- W3000483774 endingPage "89" @default.
- W3000483774 startingPage "76" @default.
- W3000483774 abstract "Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal resolution, land surface temperature (LST) dense in both space and time can only be obtained through downscaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only feasible in an ideal situation, where land surface factors as LST predictors are continuously available for downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations. Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery. First, an optimal number of thermal components are extracted at fine resolution through the application of the non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and thermal components at coarse resolution, the LST change load of each component can then be obtained at the coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates temperature over major land types and captures both seasonal and diurnal LST dynamics." @default.
- W3000483774 created "2020-01-23" @default.
- W3000483774 creator A5038255186 @default.
- W3000483774 creator A5077042002 @default.
- W3000483774 creator A5078532329 @default.
- W3000483774 creator A5082780784 @default.
- W3000483774 date "2020-03-01" @default.
- W3000483774 modified "2023-10-18" @default.
- W3000483774 title "Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis" @default.
- W3000483774 cites W1545285228 @default.
- W3000483774 cites W1727549123 @default.
- W3000483774 cites W1902027874 @default.
- W3000483774 cites W1963894054 @default.
- W3000483774 cites W1966928556 @default.
- W3000483774 cites W1976228594 @default.
- W3000483774 cites W1984807629 @default.
- W3000483774 cites W1988938058 @default.
- W3000483774 cites W1994378716 @default.
- W3000483774 cites W1996005452 @default.
- W3000483774 cites W1997058127 @default.
- W3000483774 cites W2003833323 @default.
- W3000483774 cites W2006149637 @default.
- W3000483774 cites W2011195592 @default.
- W3000483774 cites W2011408019 @default.
- W3000483774 cites W2012273291 @default.
- W3000483774 cites W2016044589 @default.
- W3000483774 cites W2023306858 @default.
- W3000483774 cites W2023929161 @default.
- W3000483774 cites W2026337749 @default.
- W3000483774 cites W2026640495 @default.
- W3000483774 cites W2036670520 @default.
- W3000483774 cites W2050225888 @default.
- W3000483774 cites W2050565140 @default.
- W3000483774 cites W2055007440 @default.
- W3000483774 cites W2058529145 @default.
- W3000483774 cites W2061048346 @default.
- W3000483774 cites W2061929982 @default.
- W3000483774 cites W2064632414 @default.
- W3000483774 cites W2067542652 @default.
- W3000483774 cites W2068371905 @default.
- W3000483774 cites W2077046239 @default.
- W3000483774 cites W2082291024 @default.
- W3000483774 cites W2087683803 @default.
- W3000483774 cites W2088110859 @default.
- W3000483774 cites W2088603520 @default.
- W3000483774 cites W2094774389 @default.
- W3000483774 cites W2101837437 @default.
- W3000483774 cites W2153763028 @default.
- W3000483774 cites W2167968759 @default.
- W3000483774 cites W2170308915 @default.
- W3000483774 cites W2194477193 @default.
- W3000483774 cites W2199807383 @default.
- W3000483774 cites W2245394838 @default.
- W3000483774 cites W2266902344 @default.
- W3000483774 cites W2274407127 @default.
- W3000483774 cites W2321235921 @default.
- W3000483774 cites W2500249665 @default.
- W3000483774 cites W2503370740 @default.
- W3000483774 cites W2514340250 @default.
- W3000483774 cites W252376446 @default.
- W3000483774 cites W2529288158 @default.
- W3000483774 cites W2595433512 @default.
- W3000483774 cites W2623639232 @default.
- W3000483774 cites W2773635712 @default.
- W3000483774 cites W2791511828 @default.
- W3000483774 cites W2794423204 @default.
- W3000483774 cites W2795018073 @default.
- W3000483774 cites W2797617023 @default.
- W3000483774 cites W2801088900 @default.
- W3000483774 cites W2843468165 @default.
- W3000483774 cites W2889506869 @default.
- W3000483774 cites W2890936640 @default.
- W3000483774 cites W2915308768 @default.
- W3000483774 cites W2919424886 @default.
- W3000483774 cites W918712335 @default.
- W3000483774 doi "https://doi.org/10.1016/j.isprsjprs.2020.01.014" @default.
- W3000483774 hasPublicationYear "2020" @default.
- W3000483774 type Work @default.
- W3000483774 sameAs 3000483774 @default.
- W3000483774 citedByCount "20" @default.
- W3000483774 countsByYear W30004837742020 @default.
- W3000483774 countsByYear W30004837742021 @default.
- W3000483774 countsByYear W30004837742022 @default.
- W3000483774 countsByYear W30004837742023 @default.
- W3000483774 crossrefType "journal-article" @default.
- W3000483774 hasAuthorship W3000483774A5038255186 @default.
- W3000483774 hasAuthorship W3000483774A5077042002 @default.
- W3000483774 hasAuthorship W3000483774A5078532329 @default.
- W3000483774 hasAuthorship W3000483774A5082780784 @default.
- W3000483774 hasBestOaLocation W30004837742 @default.
- W3000483774 hasConcept C107054158 @default.
- W3000483774 hasConcept C127313418 @default.
- W3000483774 hasConcept C127413603 @default.
- W3000483774 hasConcept C147176958 @default.
- W3000483774 hasConcept C153294291 @default.
- W3000483774 hasConcept C154945302 @default.
- W3000483774 hasConcept C205372480 @default.
- W3000483774 hasConcept C205649164 @default.