Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000486507> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3000486507 endingPage "2700" @default.
- W3000486507 startingPage "2685" @default.
- W3000486507 abstract "Machine learning using convolutional neural networks (CNNs) is investigated for the imaging of sparsely sampled seismic reflection data. A limitation of traditional imaging methods is that they often require seismic data with sufficient spatial sampling. Using CNNs for imaging, even if the spatial sampling of the data is sparse, good imaging results can still be obtained. Therefore, CNNs applied to seismic imaging have the potential of producing improved imaging results when spatial sampling of the data is sparse. The imaged model can then be used to generate more densely sampled data and in this way be used to interpolate either regularly or irregularly sampled data. Although there are many approaches for the interpolation of seismic data, here seismic imaging is performed directly with sparse seismic data once the CNN model has been trained. The CNN model is found to be relatively robust to small variations from the training dataset. For greater deviations, a larger training dataset would likely be required. If the CNN is trained with a sufficient amount of data, it has the potential of imaging more complex seismic profiles." @default.
- W3000486507 created "2020-01-23" @default.
- W3000486507 creator A5023280976 @default.
- W3000486507 creator A5066568287 @default.
- W3000486507 date "2020-01-15" @default.
- W3000486507 modified "2023-09-27" @default.
- W3000486507 title "Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data" @default.
- W3000486507 cites W1498436455 @default.
- W3000486507 cites W197865394 @default.
- W3000486507 cites W1987869189 @default.
- W3000486507 cites W2081595261 @default.
- W3000486507 cites W2110798204 @default.
- W3000486507 cites W2112796928 @default.
- W3000486507 cites W2116360511 @default.
- W3000486507 cites W2136922672 @default.
- W3000486507 cites W2581082771 @default.
- W3000486507 cites W2605232094 @default.
- W3000486507 cites W2762410434 @default.
- W3000486507 cites W2776585113 @default.
- W3000486507 cites W2781854221 @default.
- W3000486507 cites W2810812775 @default.
- W3000486507 cites W2893603301 @default.
- W3000486507 cites W2894410771 @default.
- W3000486507 cites W2919115771 @default.
- W3000486507 cites W2923222994 @default.
- W3000486507 cites W3098900881 @default.
- W3000486507 doi "https://doi.org/10.1007/s00024-019-02412-z" @default.
- W3000486507 hasPublicationYear "2020" @default.
- W3000486507 type Work @default.
- W3000486507 sameAs 3000486507 @default.
- W3000486507 citedByCount "6" @default.
- W3000486507 countsByYear W30004865072021 @default.
- W3000486507 countsByYear W30004865072022 @default.
- W3000486507 countsByYear W30004865072023 @default.
- W3000486507 crossrefType "journal-article" @default.
- W3000486507 hasAuthorship W3000486507A5023280976 @default.
- W3000486507 hasAuthorship W3000486507A5066568287 @default.
- W3000486507 hasBestOaLocation W30004865072 @default.
- W3000486507 hasConcept C106131492 @default.
- W3000486507 hasConcept C115961682 @default.
- W3000486507 hasConcept C124851039 @default.
- W3000486507 hasConcept C127313418 @default.
- W3000486507 hasConcept C137800194 @default.
- W3000486507 hasConcept C140779682 @default.
- W3000486507 hasConcept C153180895 @default.
- W3000486507 hasConcept C154945302 @default.
- W3000486507 hasConcept C159620131 @default.
- W3000486507 hasConcept C165205528 @default.
- W3000486507 hasConcept C31972630 @default.
- W3000486507 hasConcept C41008148 @default.
- W3000486507 hasConcept C62649853 @default.
- W3000486507 hasConcept C79675319 @default.
- W3000486507 hasConcept C81363708 @default.
- W3000486507 hasConceptScore W3000486507C106131492 @default.
- W3000486507 hasConceptScore W3000486507C115961682 @default.
- W3000486507 hasConceptScore W3000486507C124851039 @default.
- W3000486507 hasConceptScore W3000486507C127313418 @default.
- W3000486507 hasConceptScore W3000486507C137800194 @default.
- W3000486507 hasConceptScore W3000486507C140779682 @default.
- W3000486507 hasConceptScore W3000486507C153180895 @default.
- W3000486507 hasConceptScore W3000486507C154945302 @default.
- W3000486507 hasConceptScore W3000486507C159620131 @default.
- W3000486507 hasConceptScore W3000486507C165205528 @default.
- W3000486507 hasConceptScore W3000486507C31972630 @default.
- W3000486507 hasConceptScore W3000486507C41008148 @default.
- W3000486507 hasConceptScore W3000486507C62649853 @default.
- W3000486507 hasConceptScore W3000486507C79675319 @default.
- W3000486507 hasConceptScore W3000486507C81363708 @default.
- W3000486507 hasFunder F4320332171 @default.
- W3000486507 hasIssue "6" @default.
- W3000486507 hasLocation W30004865071 @default.
- W3000486507 hasLocation W30004865072 @default.
- W3000486507 hasOpenAccess W3000486507 @default.
- W3000486507 hasPrimaryLocation W30004865071 @default.
- W3000486507 hasRelatedWork W2521062615 @default.
- W3000486507 hasRelatedWork W2735477435 @default.
- W3000486507 hasRelatedWork W2767651786 @default.
- W3000486507 hasRelatedWork W2807436399 @default.
- W3000486507 hasRelatedWork W2912288872 @default.
- W3000486507 hasRelatedWork W3016958897 @default.
- W3000486507 hasRelatedWork W3045739591 @default.
- W3000486507 hasRelatedWork W3181746755 @default.
- W3000486507 hasRelatedWork W4283379348 @default.
- W3000486507 hasRelatedWork W4312417841 @default.
- W3000486507 hasVolume "177" @default.
- W3000486507 isParatext "false" @default.
- W3000486507 isRetracted "false" @default.
- W3000486507 magId "3000486507" @default.
- W3000486507 workType "article" @default.