Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000495592> ?p ?o ?g. }
- W3000495592 endingPage "616" @default.
- W3000495592 startingPage "605" @default.
- W3000495592 abstract "Abstract Today, climate change due to global warming is a significant concern to all of us. India's rate of greenhouse gas emissions is increasing day by day, placing India in the top ten emitters in the world. Air pollution is one of the significant contributors to the greenhouse effect. Transportation contributes about 10% of the air pollution in India. The Indian government is taking steps to reduce air pollution by encouraging the use of electric vehicles. But, success depends on consumer's sentiment, perception and understanding towards Electric Vehicles (EV). This case study tried to capture the feeling, attitude, and emotions of Indian consumers' towards electric vehicles. The main objective of this study was to extract opinions valuable to prospective buyers (to know what is best for them), marketers (for determining what features should be advertised) and manufacturers (for deciding what features should be improved) using Deep Learning techniques (e.g Doc2Vec Algorithm, Recurrent Neural Network (RNN), Convolutional Neural Network (CNN)). Due to the very nature of social media data, big data platform was chosen to analyze the sentiment towards EV. Deep Learning based techniques were preferred over traditional machine learning algorithms (Support Vector Machine, Logistic regression and Decision tree, etc.) due to its superior text mining capabilities. Two years data (2016 to 2018) were collected from different social media platform for this case study. The results showed the efficiency of deep learning algorithms and found CNN yield better results in-compare to others. The proposed optimal model will help consumers, designers and manufacturers in their decision-making capabilities to choose, design and manufacture EV." @default.
- W3000495592 created "2020-01-23" @default.
- W3000495592 creator A5042774693 @default.
- W3000495592 date "2020-10-01" @default.
- W3000495592 modified "2023-10-18" @default.
- W3000495592 title "An empirical case study on Indian consumers' sentiment towards electric vehicles: A big data analytics approach" @default.
- W3000495592 cites W1546067582 @default.
- W3000495592 cites W1571579488 @default.
- W3000495592 cites W1735053150 @default.
- W3000495592 cites W1976836318 @default.
- W3000495592 cites W1985994204 @default.
- W3000495592 cites W1994645462 @default.
- W3000495592 cites W1995068038 @default.
- W3000495592 cites W2008791002 @default.
- W3000495592 cites W2009720692 @default.
- W3000495592 cites W2013993544 @default.
- W3000495592 cites W2018188664 @default.
- W3000495592 cites W2018996296 @default.
- W3000495592 cites W2019759670 @default.
- W3000495592 cites W2028159051 @default.
- W3000495592 cites W2031998113 @default.
- W3000495592 cites W2035265584 @default.
- W3000495592 cites W2042785919 @default.
- W3000495592 cites W2055240231 @default.
- W3000495592 cites W2068043627 @default.
- W3000495592 cites W2074782023 @default.
- W3000495592 cites W2076887547 @default.
- W3000495592 cites W2086616815 @default.
- W3000495592 cites W2089890338 @default.
- W3000495592 cites W2091633200 @default.
- W3000495592 cites W2114060717 @default.
- W3000495592 cites W2117332520 @default.
- W3000495592 cites W2120400822 @default.
- W3000495592 cites W2121035759 @default.
- W3000495592 cites W2125684773 @default.
- W3000495592 cites W2136848157 @default.
- W3000495592 cites W2142127418 @default.
- W3000495592 cites W2163922914 @default.
- W3000495592 cites W2170151007 @default.
- W3000495592 cites W2215376118 @default.
- W3000495592 cites W2252793872 @default.
- W3000495592 cites W2326709869 @default.
- W3000495592 cites W2519666521 @default.
- W3000495592 cites W2551670547 @default.
- W3000495592 cites W2586611964 @default.
- W3000495592 cites W2605167499 @default.
- W3000495592 cites W264248106 @default.
- W3000495592 cites W2765382519 @default.
- W3000495592 cites W2765831199 @default.
- W3000495592 cites W2785939461 @default.
- W3000495592 cites W2790631847 @default.
- W3000495592 cites W2802967167 @default.
- W3000495592 cites W2804395802 @default.
- W3000495592 cites W2900293513 @default.
- W3000495592 cites W2904802077 @default.
- W3000495592 cites W2910635593 @default.
- W3000495592 cites W2913402131 @default.
- W3000495592 cites W2920568733 @default.
- W3000495592 cites W2943149824 @default.
- W3000495592 cites W2971122584 @default.
- W3000495592 cites W2971496655 @default.
- W3000495592 cites W2972822483 @default.
- W3000495592 cites W3121353190 @default.
- W3000495592 cites W4239510810 @default.
- W3000495592 doi "https://doi.org/10.1016/j.indmarman.2019.12.012" @default.
- W3000495592 hasPublicationYear "2020" @default.
- W3000495592 type Work @default.
- W3000495592 sameAs 3000495592 @default.
- W3000495592 citedByCount "56" @default.
- W3000495592 countsByYear W30004955922020 @default.
- W3000495592 countsByYear W30004955922021 @default.
- W3000495592 countsByYear W30004955922022 @default.
- W3000495592 countsByYear W30004955922023 @default.
- W3000495592 crossrefType "journal-article" @default.
- W3000495592 hasAuthorship W3000495592A5042774693 @default.
- W3000495592 hasConcept C105795698 @default.
- W3000495592 hasConcept C120936955 @default.
- W3000495592 hasConcept C121332964 @default.
- W3000495592 hasConcept C124101348 @default.
- W3000495592 hasConcept C144133560 @default.
- W3000495592 hasConcept C162853370 @default.
- W3000495592 hasConcept C163258240 @default.
- W3000495592 hasConcept C2522767166 @default.
- W3000495592 hasConcept C2776422217 @default.
- W3000495592 hasConcept C33923547 @default.
- W3000495592 hasConcept C41008148 @default.
- W3000495592 hasConcept C62520636 @default.
- W3000495592 hasConcept C75684735 @default.
- W3000495592 hasConcept C79158427 @default.
- W3000495592 hasConceptScore W3000495592C105795698 @default.
- W3000495592 hasConceptScore W3000495592C120936955 @default.
- W3000495592 hasConceptScore W3000495592C121332964 @default.
- W3000495592 hasConceptScore W3000495592C124101348 @default.
- W3000495592 hasConceptScore W3000495592C144133560 @default.
- W3000495592 hasConceptScore W3000495592C162853370 @default.
- W3000495592 hasConceptScore W3000495592C163258240 @default.
- W3000495592 hasConceptScore W3000495592C2522767166 @default.
- W3000495592 hasConceptScore W3000495592C2776422217 @default.