Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000571006> ?p ?o ?g. }
- W3000571006 endingPage "301" @default.
- W3000571006 startingPage "301" @default.
- W3000571006 abstract "Abutment scour is a complex three-dimensional phenomenon, which is one of the leading causes of marine structure damage. Structural integrity is potentially attainable through the precise estimation of local scour depth. Due to the high complexity of scouring hydrodynamics, existing regression-based relations cannot make accurate predictions. Therefore, this study presented a novel expansion of extreme learning machines (ELM) to predict abutment scour depth (ds) in clear water conditions. The model was built using the relative flow depth (h/L), excess abutment Froude number (Fe), abutment shape factor (Ks), and relative sediment size (d50/L). A wide range of experimental samples was collected from the literature, and data was utilized to develop the ELM model. The ELM model reliability was evaluated based on the estimation results and several statistical indices. According to the results, the sigmoid activation function (correlation coefficient, R = 0.97; root mean square error, RMSE = 0.162; mean absolute percentage error, MAPE = 7.69; and scatter index, SI = 0.088) performed the best compared with the hard limit, triangular bias, radial basis, and sine activation functions. Eleven input combinations were considered to investigate the impact of each dimensionless variable on the abutment scour depth. It was found that ds/L = f (Fe, h/L, d50/L, Ks) was the best ELM model, indicating that the dimensional analysis of the original data properly reflected the underlying physics of the problem. Also, the absence of one variable from this input combination resulted in a significant accuracy reduction. The results also demonstrated that the proposed ELM model significantly outperformed the regression-based equations derived from the literature. The ELM model presented a fundamental equation for abutment scours depth prediction. Based on the simulation results, it appeared the ELM model could be used effectively in practical engineering applications of predicting abutment scour depth. The estimated uncertainty of the developed ELM model was calculated and compared with the conventional and artificial intelligence-based models. The lowest uncertainty with a value of ±0.026 was found in the proposed model in comparison with ±0.50 as the best uncertainty of the other models." @default.
- W3000571006 created "2020-01-23" @default.
- W3000571006 creator A5008634143 @default.
- W3000571006 creator A5012595693 @default.
- W3000571006 creator A5013280761 @default.
- W3000571006 creator A5031405841 @default.
- W3000571006 creator A5048383863 @default.
- W3000571006 creator A5066692423 @default.
- W3000571006 creator A5086247042 @default.
- W3000571006 date "2020-01-20" @default.
- W3000571006 modified "2023-10-16" @default.
- W3000571006 title "A Non-Tuned Machine Learning Technique for Abutment Scour Depth in Clear Water Condition" @default.
- W3000571006 cites W1667605457 @default.
- W3000571006 cites W1955209066 @default.
- W3000571006 cites W1968005953 @default.
- W3000571006 cites W1971686864 @default.
- W3000571006 cites W1974138876 @default.
- W3000571006 cites W1975848482 @default.
- W3000571006 cites W1977802519 @default.
- W3000571006 cites W1980620531 @default.
- W3000571006 cites W1985454013 @default.
- W3000571006 cites W1985479415 @default.
- W3000571006 cites W1991794937 @default.
- W3000571006 cites W1999920328 @default.
- W3000571006 cites W2000646152 @default.
- W3000571006 cites W2005920665 @default.
- W3000571006 cites W2006827355 @default.
- W3000571006 cites W2010447814 @default.
- W3000571006 cites W2023369080 @default.
- W3000571006 cites W2026131661 @default.
- W3000571006 cites W2027724321 @default.
- W3000571006 cites W2034143268 @default.
- W3000571006 cites W2036501090 @default.
- W3000571006 cites W2039074992 @default.
- W3000571006 cites W2052963662 @default.
- W3000571006 cites W2057692198 @default.
- W3000571006 cites W2059131771 @default.
- W3000571006 cites W2062783952 @default.
- W3000571006 cites W2064450791 @default.
- W3000571006 cites W2065445636 @default.
- W3000571006 cites W2066046967 @default.
- W3000571006 cites W2068082730 @default.
- W3000571006 cites W2079247616 @default.
- W3000571006 cites W2085764216 @default.
- W3000571006 cites W2096913021 @default.
- W3000571006 cites W2108702169 @default.
- W3000571006 cites W2109622185 @default.
- W3000571006 cites W2111072639 @default.
- W3000571006 cites W2122149880 @default.
- W3000571006 cites W2141695047 @default.
- W3000571006 cites W2152054897 @default.
- W3000571006 cites W2158054309 @default.
- W3000571006 cites W2162607606 @default.
- W3000571006 cites W2164893147 @default.
- W3000571006 cites W2241420790 @default.
- W3000571006 cites W2308754766 @default.
- W3000571006 cites W2313350192 @default.
- W3000571006 cites W2461913345 @default.
- W3000571006 cites W2515066371 @default.
- W3000571006 cites W2534814456 @default.
- W3000571006 cites W2536388881 @default.
- W3000571006 cites W2559671849 @default.
- W3000571006 cites W2609216856 @default.
- W3000571006 cites W2767265995 @default.
- W3000571006 cites W2768568372 @default.
- W3000571006 cites W2791366635 @default.
- W3000571006 cites W2792120977 @default.
- W3000571006 cites W2908412011 @default.
- W3000571006 cites W2917788105 @default.
- W3000571006 cites W2938010697 @default.
- W3000571006 cites W2950500183 @default.
- W3000571006 cites W2953817873 @default.
- W3000571006 cites W2965878625 @default.
- W3000571006 cites W2971655517 @default.
- W3000571006 cites W2993892890 @default.
- W3000571006 doi "https://doi.org/10.3390/w12010301" @default.
- W3000571006 hasPublicationYear "2020" @default.
- W3000571006 type Work @default.
- W3000571006 sameAs 3000571006 @default.
- W3000571006 citedByCount "24" @default.
- W3000571006 countsByYear W30005710062020 @default.
- W3000571006 countsByYear W30005710062021 @default.
- W3000571006 countsByYear W30005710062022 @default.
- W3000571006 countsByYear W30005710062023 @default.
- W3000571006 crossrefType "journal-article" @default.
- W3000571006 hasAuthorship W3000571006A5008634143 @default.
- W3000571006 hasAuthorship W3000571006A5012595693 @default.
- W3000571006 hasAuthorship W3000571006A5013280761 @default.
- W3000571006 hasAuthorship W3000571006A5031405841 @default.
- W3000571006 hasAuthorship W3000571006A5048383863 @default.
- W3000571006 hasAuthorship W3000571006A5066692423 @default.
- W3000571006 hasAuthorship W3000571006A5086247042 @default.
- W3000571006 hasBestOaLocation W30005710061 @default.
- W3000571006 hasConcept C102634674 @default.
- W3000571006 hasConcept C105795698 @default.
- W3000571006 hasConcept C119857082 @default.
- W3000571006 hasConcept C121332964 @default.
- W3000571006 hasConcept C122383733 @default.