Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000577085> ?p ?o ?g. }
- W3000577085 endingPage "227" @default.
- W3000577085 startingPage "212" @default.
- W3000577085 abstract "Facial expressions play an important role during communications, allowing information regarding the emotional state of an individual to be conveyed and inferred. Research suggests that automatic facial expression recognition is a promising avenue of enquiry in mental healthcare, as facial expressions can also reflect an individual's mental state. In order to develop user-friendly, low-cost and effective facial expression analysis systems for mental health care, this paper presents a novel deep convolution network based emotion analysis framework to support mental state detection and diagnosis. The proposed system is able to process facial images and interpret the temporal evolution of emotions through a new solution in which deep features are extracted from the Fully Connected Layer 6 of the AlexNet, with a standard Linear Discriminant Analysis Classifier exploited to obtain the final classification outcome. It is tested against 5 benchmarking databases, including JAFFE, KDEF,CK+, and databases with the images obtained ‘in the wild’ such as FER2013 and AffectNet. Compared with the other state-of-the-art methods, we observe that our method has overall higher accuracy of facial expression recognition. Additionally, when compared to the state-of-the-art deep learning algorithms such as Vgg16, GoogleNet, ResNet and AlexNet, the proposed method demonstrated better efficiency and has less device requirements. The experiments presented in this paper demonstrate that the proposed method outperforms the other methods in terms of accuracy and efficiency which suggests it could act as a smart, low-cost, user-friendly cognitive aid to detect, monitor, and diagnose the mental health of a patient through automatic facial expression analysis." @default.
- W3000577085 created "2020-01-23" @default.
- W3000577085 creator A5022264324 @default.
- W3000577085 creator A5025756223 @default.
- W3000577085 creator A5030922550 @default.
- W3000577085 creator A5066119228 @default.
- W3000577085 creator A5070657246 @default.
- W3000577085 creator A5071619668 @default.
- W3000577085 creator A5079738340 @default.
- W3000577085 date "2020-05-01" @default.
- W3000577085 modified "2023-10-12" @default.
- W3000577085 title "Deep convolution network based emotion analysis towards mental health care" @default.
- W3000577085 cites W1492413480 @default.
- W3000577085 cites W1573221778 @default.
- W3000577085 cites W168311601 @default.
- W3000577085 cites W1965947362 @default.
- W3000577085 cites W1969030392 @default.
- W3000577085 cites W1995771686 @default.
- W3000577085 cites W2004514093 @default.
- W3000577085 cites W2033773055 @default.
- W3000577085 cites W2038361625 @default.
- W3000577085 cites W2047177496 @default.
- W3000577085 cites W2049506131 @default.
- W3000577085 cites W2106115875 @default.
- W3000577085 cites W2125127226 @default.
- W3000577085 cites W2155655319 @default.
- W3000577085 cites W2164598857 @default.
- W3000577085 cites W2168893862 @default.
- W3000577085 cites W2344725271 @default.
- W3000577085 cites W2728428426 @default.
- W3000577085 cites W2745497104 @default.
- W3000577085 cites W2750692136 @default.
- W3000577085 cites W2792191740 @default.
- W3000577085 cites W2794393374 @default.
- W3000577085 cites W2887509026 @default.
- W3000577085 cites W2904483377 @default.
- W3000577085 cites W2908671501 @default.
- W3000577085 cites W2911935942 @default.
- W3000577085 cites W2944523338 @default.
- W3000577085 cites W2944655310 @default.
- W3000577085 cites W2954788722 @default.
- W3000577085 cites W2965901996 @default.
- W3000577085 doi "https://doi.org/10.1016/j.neucom.2020.01.034" @default.
- W3000577085 hasPublicationYear "2020" @default.
- W3000577085 type Work @default.
- W3000577085 sameAs 3000577085 @default.
- W3000577085 citedByCount "69" @default.
- W3000577085 countsByYear W30005770852020 @default.
- W3000577085 countsByYear W30005770852021 @default.
- W3000577085 countsByYear W30005770852022 @default.
- W3000577085 countsByYear W30005770852023 @default.
- W3000577085 crossrefType "journal-article" @default.
- W3000577085 hasAuthorship W3000577085A5022264324 @default.
- W3000577085 hasAuthorship W3000577085A5025756223 @default.
- W3000577085 hasAuthorship W3000577085A5030922550 @default.
- W3000577085 hasAuthorship W3000577085A5066119228 @default.
- W3000577085 hasAuthorship W3000577085A5070657246 @default.
- W3000577085 hasAuthorship W3000577085A5071619668 @default.
- W3000577085 hasAuthorship W3000577085A5079738340 @default.
- W3000577085 hasBestOaLocation W30005770852 @default.
- W3000577085 hasConcept C108583219 @default.
- W3000577085 hasConcept C118552586 @default.
- W3000577085 hasConcept C119857082 @default.
- W3000577085 hasConcept C134362201 @default.
- W3000577085 hasConcept C144133560 @default.
- W3000577085 hasConcept C153180895 @default.
- W3000577085 hasConcept C154945302 @default.
- W3000577085 hasConcept C15744967 @default.
- W3000577085 hasConcept C162853370 @default.
- W3000577085 hasConcept C195704467 @default.
- W3000577085 hasConcept C41008148 @default.
- W3000577085 hasConcept C69738355 @default.
- W3000577085 hasConcept C81363708 @default.
- W3000577085 hasConcept C86251818 @default.
- W3000577085 hasConcept C95623464 @default.
- W3000577085 hasConceptScore W3000577085C108583219 @default.
- W3000577085 hasConceptScore W3000577085C118552586 @default.
- W3000577085 hasConceptScore W3000577085C119857082 @default.
- W3000577085 hasConceptScore W3000577085C134362201 @default.
- W3000577085 hasConceptScore W3000577085C144133560 @default.
- W3000577085 hasConceptScore W3000577085C153180895 @default.
- W3000577085 hasConceptScore W3000577085C154945302 @default.
- W3000577085 hasConceptScore W3000577085C15744967 @default.
- W3000577085 hasConceptScore W3000577085C162853370 @default.
- W3000577085 hasConceptScore W3000577085C195704467 @default.
- W3000577085 hasConceptScore W3000577085C41008148 @default.
- W3000577085 hasConceptScore W3000577085C69738355 @default.
- W3000577085 hasConceptScore W3000577085C81363708 @default.
- W3000577085 hasConceptScore W3000577085C86251818 @default.
- W3000577085 hasConceptScore W3000577085C95623464 @default.
- W3000577085 hasFunder F4320320006 @default.
- W3000577085 hasFunder F4320334627 @default.
- W3000577085 hasLocation W30005770851 @default.
- W3000577085 hasLocation W30005770852 @default.
- W3000577085 hasLocation W30005770853 @default.
- W3000577085 hasOpenAccess W3000577085 @default.
- W3000577085 hasPrimaryLocation W30005770851 @default.
- W3000577085 hasRelatedWork W1604550738 @default.