Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000593981> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3000593981 abstract "In this paper, three types of feature sets are used for evaluating the performance of a proposed approach for crack detection in images of historical buildings. The feature sets are hand-crafted features, Convolutional Neural Network (CNN) learned features, and fusion of hand-crafted and CNN-learned features. The proposed approach is validated by implementing several Machine Learning (ML) classifiers with applying 3-fold cross validation. Two datasets of crack images are used for developing the feature sets. Experimental results show that both Support Vector Machine (SVM) and stacked ensemble classifiers achieve highest accuracy of 98% for crack detection using the CNN-learned features with dimensionality reduction. The significance of this study is to highlight the impact of different types of feature sets on the performance of the classification process for crack detection." @default.
- W3000593981 created "2020-01-23" @default.
- W3000593981 creator A5033608640 @default.
- W3000593981 creator A5035836101 @default.
- W3000593981 creator A5069726973 @default.
- W3000593981 date "2019-11-12" @default.
- W3000593981 modified "2023-09-30" @default.
- W3000593981 title "Performance Analysis of Using Feature Fusion for Crack Detection in Images of Historical Buildings" @default.
- W3000593981 cites W2081434183 @default.
- W3000593981 cites W2091967951 @default.
- W3000593981 cites W2111834544 @default.
- W3000593981 cites W2460583509 @default.
- W3000593981 cites W2519746072 @default.
- W3000593981 cites W2598457882 @default.
- W3000593981 cites W2620139344 @default.
- W3000593981 cites W2756063524 @default.
- W3000593981 cites W2766305482 @default.
- W3000593981 cites W2782436336 @default.
- W3000593981 cites W2792196801 @default.
- W3000593981 cites W2799289872 @default.
- W3000593981 cites W2805538999 @default.
- W3000593981 cites W2810123099 @default.
- W3000593981 cites W2887597701 @default.
- W3000593981 cites W2898454434 @default.
- W3000593981 cites W2899803215 @default.
- W3000593981 cites W2910362756 @default.
- W3000593981 cites W2920327301 @default.
- W3000593981 cites W2944727992 @default.
- W3000593981 cites W3098357269 @default.
- W3000593981 cites W3124942917 @default.
- W3000593981 doi "https://doi.org/10.1145/3297662.3365800" @default.
- W3000593981 hasPublicationYear "2019" @default.
- W3000593981 type Work @default.
- W3000593981 sameAs 3000593981 @default.
- W3000593981 citedByCount "4" @default.
- W3000593981 countsByYear W30005939812021 @default.
- W3000593981 countsByYear W30005939812022 @default.
- W3000593981 crossrefType "proceedings-article" @default.
- W3000593981 hasAuthorship W3000593981A5033608640 @default.
- W3000593981 hasAuthorship W3000593981A5035836101 @default.
- W3000593981 hasAuthorship W3000593981A5069726973 @default.
- W3000593981 hasConcept C138885662 @default.
- W3000593981 hasConcept C153180895 @default.
- W3000593981 hasConcept C154945302 @default.
- W3000593981 hasConcept C158525013 @default.
- W3000593981 hasConcept C2776401178 @default.
- W3000593981 hasConcept C31972630 @default.
- W3000593981 hasConcept C41008148 @default.
- W3000593981 hasConcept C41895202 @default.
- W3000593981 hasConcept C52622490 @default.
- W3000593981 hasConceptScore W3000593981C138885662 @default.
- W3000593981 hasConceptScore W3000593981C153180895 @default.
- W3000593981 hasConceptScore W3000593981C154945302 @default.
- W3000593981 hasConceptScore W3000593981C158525013 @default.
- W3000593981 hasConceptScore W3000593981C2776401178 @default.
- W3000593981 hasConceptScore W3000593981C31972630 @default.
- W3000593981 hasConceptScore W3000593981C41008148 @default.
- W3000593981 hasConceptScore W3000593981C41895202 @default.
- W3000593981 hasConceptScore W3000593981C52622490 @default.
- W3000593981 hasLocation W30005939811 @default.
- W3000593981 hasOpenAccess W3000593981 @default.
- W3000593981 hasPrimaryLocation W30005939811 @default.
- W3000593981 hasRelatedWork W1504288058 @default.
- W3000593981 hasRelatedWork W2016461833 @default.
- W3000593981 hasRelatedWork W2102575890 @default.
- W3000593981 hasRelatedWork W2331674254 @default.
- W3000593981 hasRelatedWork W2363843671 @default.
- W3000593981 hasRelatedWork W2382607599 @default.
- W3000593981 hasRelatedWork W2534909612 @default.
- W3000593981 hasRelatedWork W2811390910 @default.
- W3000593981 hasRelatedWork W3142646063 @default.
- W3000593981 hasRelatedWork W3197541072 @default.
- W3000593981 isParatext "false" @default.
- W3000593981 isRetracted "false" @default.
- W3000593981 magId "3000593981" @default.
- W3000593981 workType "article" @default.