Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000638052> ?p ?o ?g. }
- W3000638052 endingPage "95" @default.
- W3000638052 startingPage "82" @default.
- W3000638052 abstract "Providing autonomous systems with an effective quantity and quality of information from a desired task is challenging. In particular, autonomous vehicles, must have a reliable vision of their workspace to robustly accomplish driving functions. Speaking of machine vision, deep learning techniques, and specifically convolutional neural networks, have been proven to be the state of the art technology in the field. As these networks typically involve millions of parameters and elements, designing an optimal architecture for deep learning structures is a difficult task which is globally under investigation by researchers. This study experimentally evaluates the impact of three major architectural properties of convolutional networks, including the number of layers, filters, and filter size on their performance. In this study, several models with different properties are developed, equally trained, and then applied to an autonomous car in a realistic simulation environment. A new ensemble approach is also proposed to calculate and update weights for the models regarding their mean squared error values. Based on design properties, performance results are reported and compared for further investigations. Surprisingly, the number of filters itself does not largely affect the performance efficiency. As a result, proper allocation of filters with different kernel sizes through the layers introduces a considerable improvement in the performance. Achievements of this study will provide the researchers with a clear clue and direction in designing optimal network architectures for deep learning purposes." @default.
- W3000638052 created "2020-01-23" @default.
- W3000638052 creator A5015293969 @default.
- W3000638052 creator A5059557438 @default.
- W3000638052 creator A5064800972 @default.
- W3000638052 creator A5088897776 @default.
- W3000638052 date "2020-01-01" @default.
- W3000638052 modified "2023-10-10" @default.
- W3000638052 title "Deep imitation learning for autonomous vehicles based on convolutional neural networks" @default.
- W3000638052 cites W1480087110 @default.
- W3000638052 cites W1527702126 @default.
- W3000638052 cites W1584466033 @default.
- W3000638052 cites W1605688901 @default.
- W3000638052 cites W1686810756 @default.
- W3000638052 cites W1849277567 @default.
- W3000638052 cites W1986014385 @default.
- W3000638052 cites W2016065734 @default.
- W3000638052 cites W2061082730 @default.
- W3000638052 cites W2070230130 @default.
- W3000638052 cites W2100128988 @default.
- W3000638052 cites W2116165953 @default.
- W3000638052 cites W2139141175 @default.
- W3000638052 cites W2145339207 @default.
- W3000638052 cites W2149933564 @default.
- W3000638052 cites W2156303437 @default.
- W3000638052 cites W2163605009 @default.
- W3000638052 cites W2163712044 @default.
- W3000638052 cites W2272841450 @default.
- W3000638052 cites W2555714304 @default.
- W3000638052 cites W2571699337 @default.
- W3000638052 cites W2575705757 @default.
- W3000638052 cites W2589275886 @default.
- W3000638052 cites W2591957724 @default.
- W3000638052 cites W2604382266 @default.
- W3000638052 cites W2604970008 @default.
- W3000638052 cites W2605359652 @default.
- W3000638052 cites W2609009256 @default.
- W3000638052 cites W2619354140 @default.
- W3000638052 cites W2729615412 @default.
- W3000638052 cites W2743406267 @default.
- W3000638052 cites W2746584771 @default.
- W3000638052 cites W2749439257 @default.
- W3000638052 cites W2757564505 @default.
- W3000638052 cites W2764012408 @default.
- W3000638052 cites W2767101793 @default.
- W3000638052 cites W2796096089 @default.
- W3000638052 cites W2802480283 @default.
- W3000638052 cites W2806832624 @default.
- W3000638052 cites W2884062317 @default.
- W3000638052 cites W2892221324 @default.
- W3000638052 cites W2901282250 @default.
- W3000638052 cites W2903891611 @default.
- W3000638052 cites W2912934387 @default.
- W3000638052 cites W2954388198 @default.
- W3000638052 cites W2963094133 @default.
- W3000638052 cites W2963098081 @default.
- W3000638052 cites W2963277051 @default.
- W3000638052 cites W2963542991 @default.
- W3000638052 cites W2963669336 @default.
- W3000638052 cites W2963686760 @default.
- W3000638052 doi "https://doi.org/10.1109/jas.2019.1911825" @default.
- W3000638052 hasPublicationYear "2020" @default.
- W3000638052 type Work @default.
- W3000638052 sameAs 3000638052 @default.
- W3000638052 citedByCount "106" @default.
- W3000638052 countsByYear W30006380522020 @default.
- W3000638052 countsByYear W30006380522021 @default.
- W3000638052 countsByYear W30006380522022 @default.
- W3000638052 countsByYear W30006380522023 @default.
- W3000638052 crossrefType "journal-article" @default.
- W3000638052 hasAuthorship W3000638052A5015293969 @default.
- W3000638052 hasAuthorship W3000638052A5059557438 @default.
- W3000638052 hasAuthorship W3000638052A5064800972 @default.
- W3000638052 hasAuthorship W3000638052A5088897776 @default.
- W3000638052 hasConcept C106131492 @default.
- W3000638052 hasConcept C108583219 @default.
- W3000638052 hasConcept C114614502 @default.
- W3000638052 hasConcept C119857082 @default.
- W3000638052 hasConcept C127413603 @default.
- W3000638052 hasConcept C154945302 @default.
- W3000638052 hasConcept C201995342 @default.
- W3000638052 hasConcept C202444582 @default.
- W3000638052 hasConcept C2780451532 @default.
- W3000638052 hasConcept C31972630 @default.
- W3000638052 hasConcept C33923547 @default.
- W3000638052 hasConcept C41008148 @default.
- W3000638052 hasConcept C50644808 @default.
- W3000638052 hasConcept C58581272 @default.
- W3000638052 hasConcept C74193536 @default.
- W3000638052 hasConcept C81363708 @default.
- W3000638052 hasConcept C90509273 @default.
- W3000638052 hasConcept C9652623 @default.
- W3000638052 hasConceptScore W3000638052C106131492 @default.
- W3000638052 hasConceptScore W3000638052C108583219 @default.
- W3000638052 hasConceptScore W3000638052C114614502 @default.
- W3000638052 hasConceptScore W3000638052C119857082 @default.
- W3000638052 hasConceptScore W3000638052C127413603 @default.
- W3000638052 hasConceptScore W3000638052C154945302 @default.