Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000651604> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3000651604 endingPage "551" @default.
- W3000651604 startingPage "551" @default.
- W3000651604 abstract "Breast cancer is considered one of the major threats for women’s health all over the world. The World Health Organization (WHO) has reported that 1 in every 12 women could be subject to a breast abnormality during her lifetime. To increase survival rates, it is found that it is very effective to early detect breast cancer. Mammography-based breast cancer screening is the leading technology to achieve this aim. However, it still can not deal with patients with dense breast nor with tumor size less than 2 mm. Thermography-based breast cancer approach can address these problems. In this paper, a thermogram-based breast cancer detection approach is proposed. This approach consists of four phases: (1) Image Pre-processing using homomorphic filtering, top-hat transform and adaptive histogram equalization, (2) ROI Segmentation using binary masking and K-mean clustering, (3) feature extraction using signature boundary, and (4) classification in which two classifiers, Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP), were used and compared. The proposed approach is evaluated using the public dataset, DMR-IR. Various experiment scenarios (e.g., integration between geometrical feature extraction, and textural features extraction) were designed and evaluated using different measurements (i.e., accuracy, sensitivity, and specificity). The results showed that ELM-based results were better than MLP-based ones with more than 19%." @default.
- W3000651604 created "2020-01-23" @default.
- W3000651604 creator A5002232112 @default.
- W3000651604 creator A5016711703 @default.
- W3000651604 creator A5084399799 @default.
- W3000651604 date "2020-01-11" @default.
- W3000651604 modified "2023-10-06" @default.
- W3000651604 title "Thermogram Breast Cancer Detection: A Comparative Study of Two Machine Learning Techniques" @default.
- W3000651604 cites W1977754993 @default.
- W3000651604 cites W1989883122 @default.
- W3000651604 cites W1994590222 @default.
- W3000651604 cites W2031071736 @default.
- W3000651604 cites W2034854359 @default.
- W3000651604 cites W2077819016 @default.
- W3000651604 cites W2086506481 @default.
- W3000651604 cites W2100518482 @default.
- W3000651604 cites W2135733203 @default.
- W3000651604 cites W2135894269 @default.
- W3000651604 cites W2158646588 @default.
- W3000651604 cites W2166231444 @default.
- W3000651604 cites W2325015832 @default.
- W3000651604 cites W2465621303 @default.
- W3000651604 cites W2525940147 @default.
- W3000651604 cites W2889507043 @default.
- W3000651604 cites W2989010209 @default.
- W3000651604 doi "https://doi.org/10.3390/app10020551" @default.
- W3000651604 hasPublicationYear "2020" @default.
- W3000651604 type Work @default.
- W3000651604 sameAs 3000651604 @default.
- W3000651604 citedByCount "24" @default.
- W3000651604 countsByYear W30006516042020 @default.
- W3000651604 countsByYear W30006516042021 @default.
- W3000651604 countsByYear W30006516042022 @default.
- W3000651604 countsByYear W30006516042023 @default.
- W3000651604 crossrefType "journal-article" @default.
- W3000651604 hasAuthorship W3000651604A5002232112 @default.
- W3000651604 hasAuthorship W3000651604A5016711703 @default.
- W3000651604 hasAuthorship W3000651604A5084399799 @default.
- W3000651604 hasBestOaLocation W30006516041 @default.
- W3000651604 hasConcept C115961682 @default.
- W3000651604 hasConcept C119857082 @default.
- W3000651604 hasConcept C121608353 @default.
- W3000651604 hasConcept C126322002 @default.
- W3000651604 hasConcept C136943445 @default.
- W3000651604 hasConcept C153180895 @default.
- W3000651604 hasConcept C154945302 @default.
- W3000651604 hasConcept C2780472235 @default.
- W3000651604 hasConcept C30387639 @default.
- W3000651604 hasConcept C41008148 @default.
- W3000651604 hasConcept C50644808 @default.
- W3000651604 hasConcept C52622490 @default.
- W3000651604 hasConcept C530470458 @default.
- W3000651604 hasConcept C53533937 @default.
- W3000651604 hasConcept C60908668 @default.
- W3000651604 hasConcept C71924100 @default.
- W3000651604 hasConcept C73555534 @default.
- W3000651604 hasConcept C87335442 @default.
- W3000651604 hasConceptScore W3000651604C115961682 @default.
- W3000651604 hasConceptScore W3000651604C119857082 @default.
- W3000651604 hasConceptScore W3000651604C121608353 @default.
- W3000651604 hasConceptScore W3000651604C126322002 @default.
- W3000651604 hasConceptScore W3000651604C136943445 @default.
- W3000651604 hasConceptScore W3000651604C153180895 @default.
- W3000651604 hasConceptScore W3000651604C154945302 @default.
- W3000651604 hasConceptScore W3000651604C2780472235 @default.
- W3000651604 hasConceptScore W3000651604C30387639 @default.
- W3000651604 hasConceptScore W3000651604C41008148 @default.
- W3000651604 hasConceptScore W3000651604C50644808 @default.
- W3000651604 hasConceptScore W3000651604C52622490 @default.
- W3000651604 hasConceptScore W3000651604C530470458 @default.
- W3000651604 hasConceptScore W3000651604C53533937 @default.
- W3000651604 hasConceptScore W3000651604C60908668 @default.
- W3000651604 hasConceptScore W3000651604C71924100 @default.
- W3000651604 hasConceptScore W3000651604C73555534 @default.
- W3000651604 hasConceptScore W3000651604C87335442 @default.
- W3000651604 hasFunder F4320324553 @default.
- W3000651604 hasIssue "2" @default.
- W3000651604 hasLocation W30006516041 @default.
- W3000651604 hasLocation W30006516042 @default.
- W3000651604 hasOpenAccess W3000651604 @default.
- W3000651604 hasPrimaryLocation W30006516041 @default.
- W3000651604 hasRelatedWork W1981015757 @default.
- W3000651604 hasRelatedWork W1983610137 @default.
- W3000651604 hasRelatedWork W2020835926 @default.
- W3000651604 hasRelatedWork W2085553065 @default.
- W3000651604 hasRelatedWork W2550539038 @default.
- W3000651604 hasRelatedWork W2752642517 @default.
- W3000651604 hasRelatedWork W2795417921 @default.
- W3000651604 hasRelatedWork W3012084400 @default.
- W3000651604 hasRelatedWork W4240184158 @default.
- W3000651604 hasRelatedWork W4253160043 @default.
- W3000651604 hasVolume "10" @default.
- W3000651604 isParatext "false" @default.
- W3000651604 isRetracted "false" @default.
- W3000651604 magId "3000651604" @default.
- W3000651604 workType "article" @default.