Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000665717> ?p ?o ?g. }
- W3000665717 endingPage "102580" @default.
- W3000665717 startingPage "102580" @default.
- W3000665717 abstract "Abstract Investigating the varying ridership patterns of rail transit ridership and their influencing factors at the station level is essential for station planning, urban planning, and passenger flow management. Although many studies have investigated the associations between rail transit ridership and built environment, few studies combined spatial big data to characterize the built environment factors at a fine scale and linked those factors with the varying patterns of rail transit ridership. In this study, we characterized the fine-scale built environment factors in the central urban area of Guangzhou, China, by integrating multi-source geospatial big data including Tencent user data, building footprint and stories, points of interest (POI) data and Google Earth high-resolution images. Six direct ridership models (DRMs) based on the backward stepwise regression method were built to compare the different effects between daily, temporal and directional ridership. The results indicated that number of station entrances/exits and transfer dummy, were positively associated with rail transit ridership, while connecting bus station sites and the parking lots were not significantly related to ridership. Population density and common residences land were found to be dominating factors in promoting morning boarding & evening alighting ridership, which implied that these two factors should be focused on to encourage commuting-purpose rail transit usage. However, the indistinct effect of urban villages on rail transit ridership suggested planners to pay more attentions on urban regeneration at the pedestrian catchment areas (PCAs) with urban villages. High employment density and a large FAR were suggested at the employment-oriented areas owing to their importance in promoting rail transit ridership, especially the morning alighting & evening boarding ridership. Moreover, educational research land use significantly affected weekday ridership while sports land use positively influenced weekend ridership, which suggested planners to pay more attention on the non-commuting trips. The different influencing mechanisms of various types of rail transit ridership highlighted the need to consider land use balance planning and trip demand optimization in highly urbanized metropolises in developing countries." @default.
- W3000665717 created "2020-01-23" @default.
- W3000665717 creator A5009799137 @default.
- W3000665717 creator A5021117983 @default.
- W3000665717 creator A5027270285 @default.
- W3000665717 creator A5038345056 @default.
- W3000665717 creator A5049396596 @default.
- W3000665717 creator A5069597963 @default.
- W3000665717 creator A5081944745 @default.
- W3000665717 date "2020-04-01" @default.
- W3000665717 modified "2023-10-16" @default.
- W3000665717 title "The varying patterns of rail transit ridership and their relationships with fine-scale built environment factors: Big data analytics from Guangzhou" @default.
- W3000665717 cites W1698470199 @default.
- W3000665717 cites W1714504487 @default.
- W3000665717 cites W1898744853 @default.
- W3000665717 cites W1957281453 @default.
- W3000665717 cites W1991693165 @default.
- W3000665717 cites W1996658168 @default.
- W3000665717 cites W2003058432 @default.
- W3000665717 cites W2030957430 @default.
- W3000665717 cites W2032807833 @default.
- W3000665717 cites W2033525335 @default.
- W3000665717 cites W2044007257 @default.
- W3000665717 cites W2055503627 @default.
- W3000665717 cites W2056522366 @default.
- W3000665717 cites W2064329629 @default.
- W3000665717 cites W2076431592 @default.
- W3000665717 cites W2076847577 @default.
- W3000665717 cites W2077210193 @default.
- W3000665717 cites W2085009188 @default.
- W3000665717 cites W2085996514 @default.
- W3000665717 cites W2098557804 @default.
- W3000665717 cites W2112620321 @default.
- W3000665717 cites W2121001699 @default.
- W3000665717 cites W2140626798 @default.
- W3000665717 cites W2506999064 @default.
- W3000665717 cites W2566415567 @default.
- W3000665717 cites W2617355100 @default.
- W3000665717 cites W2727038893 @default.
- W3000665717 cites W2748986453 @default.
- W3000665717 cites W2766793893 @default.
- W3000665717 cites W2788060705 @default.
- W3000665717 cites W2789449034 @default.
- W3000665717 cites W2793275285 @default.
- W3000665717 cites W2804319089 @default.
- W3000665717 cites W2806312459 @default.
- W3000665717 cites W2883414947 @default.
- W3000665717 cites W2896118788 @default.
- W3000665717 cites W2902118657 @default.
- W3000665717 cites W2939120428 @default.
- W3000665717 cites W2946584714 @default.
- W3000665717 cites W2954744300 @default.
- W3000665717 cites W2993383518 @default.
- W3000665717 doi "https://doi.org/10.1016/j.cities.2019.102580" @default.
- W3000665717 hasPublicationYear "2020" @default.
- W3000665717 type Work @default.
- W3000665717 sameAs 3000665717 @default.
- W3000665717 citedByCount "61" @default.
- W3000665717 countsByYear W30006657172020 @default.
- W3000665717 countsByYear W30006657172021 @default.
- W3000665717 countsByYear W30006657172022 @default.
- W3000665717 countsByYear W30006657172023 @default.
- W3000665717 crossrefType "journal-article" @default.
- W3000665717 hasAuthorship W3000665717A5009799137 @default.
- W3000665717 hasAuthorship W3000665717A5021117983 @default.
- W3000665717 hasAuthorship W3000665717A5027270285 @default.
- W3000665717 hasAuthorship W3000665717A5038345056 @default.
- W3000665717 hasAuthorship W3000665717A5049396596 @default.
- W3000665717 hasAuthorship W3000665717A5069597963 @default.
- W3000665717 hasAuthorship W3000665717A5081944745 @default.
- W3000665717 hasConcept C124101348 @default.
- W3000665717 hasConcept C127413603 @default.
- W3000665717 hasConcept C144133560 @default.
- W3000665717 hasConcept C175801342 @default.
- W3000665717 hasConcept C205649164 @default.
- W3000665717 hasConcept C22212356 @default.
- W3000665717 hasConcept C2522767166 @default.
- W3000665717 hasConcept C2778022998 @default.
- W3000665717 hasConcept C2778755073 @default.
- W3000665717 hasConcept C2992701429 @default.
- W3000665717 hasConcept C41008148 @default.
- W3000665717 hasConcept C539828613 @default.
- W3000665717 hasConcept C58640448 @default.
- W3000665717 hasConcept C75684735 @default.
- W3000665717 hasConcept C79158427 @default.
- W3000665717 hasConceptScore W3000665717C124101348 @default.
- W3000665717 hasConceptScore W3000665717C127413603 @default.
- W3000665717 hasConceptScore W3000665717C144133560 @default.
- W3000665717 hasConceptScore W3000665717C175801342 @default.
- W3000665717 hasConceptScore W3000665717C205649164 @default.
- W3000665717 hasConceptScore W3000665717C22212356 @default.
- W3000665717 hasConceptScore W3000665717C2522767166 @default.
- W3000665717 hasConceptScore W3000665717C2778022998 @default.
- W3000665717 hasConceptScore W3000665717C2778755073 @default.
- W3000665717 hasConceptScore W3000665717C2992701429 @default.
- W3000665717 hasConceptScore W3000665717C41008148 @default.
- W3000665717 hasConceptScore W3000665717C539828613 @default.
- W3000665717 hasConceptScore W3000665717C58640448 @default.