Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000672272> ?p ?o ?g. }
- W3000672272 endingPage "107602961989782" @default.
- W3000672272 startingPage "107602961989782" @default.
- W3000672272 abstract "Acute traumatic coagulopathy (ATC) is an extremely common but silent murderer; this condition presents early after trauma and impacts approximately 30% of severely injured patients who are admitted to emergency departments (EDs). Given that conventional coagulation indicators usually require more than 1 hour after admission to yield results—a limitation that frequently prevents the ability for clinicians to make appropriate interventions during the optimal therapeutic window—it is clearly of vital importance to develop prediction models that can rapidly identify ATC; such models would also facilitate ancillary resource management and clinical decision support. Using the critical care Emergency Rescue Database and further collected data in ED, a total of 1385 patients were analyzed and cases with initial international normalized ratio (INR) values >1.5 upon admission to the ED met the defined diagnostic criteria for ATC; nontraumatic conditions with potentially disordered coagulation systems were excluded. A total of 818 individuals were collected from Emergency Rescue Database as derivation cohorts, then were split 7:3 into training and test data sets. A Pearson correlation matrix was used to initially identify likely key clinical features associated with ATC, and analysis of data distributions was undertaken prior to the selection of suitable modeling tools. Both machine learning (random forest) and traditional logistic regression were deployed for prediction modeling of ATC. After the model was built, another 587 patients were further collected in ED as validation cohorts. The ATC prediction models incorporated red blood cell count, Shock Index, base excess, lactate, diastolic blood pressure, and potential of hydrogen. Of 818 trauma patients filtered from the database, 747 (91.3%) patients did not present ATC (INR ≤ 1.5) and 71 (8.7%) patients had ATC (INR > 1.5) upon admission to the ED. Compared to the logistic regression model, the model based on the random forest algorithm showed better accuracy (94.0%, 95% confidence interval [CI]: 0.922-0.954 to 93.5%, 95% CI: 0.916-0.95), precision (93.3%, 95% CI: 0.914-0.948 to 93.1%, 95% CI: 0.912-0.946), F1 score (93.4%, 95% CI: 0.915-0.949 to 92%, 95% CI: 0.9-0.937), and recall score (94.0%, 95% CI: 0.922-0.954 to 93.5%, 95% CI: 0.916-0.95) but yielded lower area under the receiver operating characteristic curve (AU-ROC) (0.810, 95% CI: 0.673-0.918 to 0.849, 95% CI: 0.732-0.944) for predicting ATC in the trauma patients. The result is similar in the validation cohort. The values for classification accuracy, precision, F1 score, and recall score of random forest model were 0.916, 0.907, 0.901, and 0.917, while the AU-ROC was 0.830. The values for classification accuracy, precision, F1 score, and recall score of logistic regression model were 0.905, 0.887, 0.883, and 0.905, while the AU-ROC was 0.858. We developed and validated a prediction model based on objective and rapidly accessible clinical data that very confidently identify trauma patients at risk for ATC upon their arrival to the ED. Beyond highlighting the value of ED initial laboratory tests and vital signs when used in combination with data analysis and modeling, our study illustrates a practical method that should greatly facilitates both warning and guided target intervention for ATC." @default.
- W3000672272 created "2020-01-23" @default.
- W3000672272 creator A5001000619 @default.
- W3000672272 creator A5021235454 @default.
- W3000672272 creator A5023337801 @default.
- W3000672272 creator A5024561419 @default.
- W3000672272 creator A5037989560 @default.
- W3000672272 creator A5046958855 @default.
- W3000672272 creator A5053375208 @default.
- W3000672272 creator A5053653312 @default.
- W3000672272 creator A5057816423 @default.
- W3000672272 creator A5077696966 @default.
- W3000672272 creator A5091204979 @default.
- W3000672272 date "2020-01-01" @default.
- W3000672272 modified "2023-10-16" @default.
- W3000672272 title "A Machine Learning–Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization" @default.
- W3000672272 cites W1966158682 @default.
- W3000672272 cites W1967391155 @default.
- W3000672272 cites W1967433109 @default.
- W3000672272 cites W1968862239 @default.
- W3000672272 cites W1974693697 @default.
- W3000672272 cites W1986241684 @default.
- W3000672272 cites W2018340439 @default.
- W3000672272 cites W2026907051 @default.
- W3000672272 cites W2034371538 @default.
- W3000672272 cites W2063926980 @default.
- W3000672272 cites W2064521505 @default.
- W3000672272 cites W2065513205 @default.
- W3000672272 cites W2076829234 @default.
- W3000672272 cites W2084207963 @default.
- W3000672272 cites W2087792760 @default.
- W3000672272 cites W2091685079 @default.
- W3000672272 cites W2101494433 @default.
- W3000672272 cites W2108344016 @default.
- W3000672272 cites W2117389553 @default.
- W3000672272 cites W2118146838 @default.
- W3000672272 cites W2131587771 @default.
- W3000672272 cites W2135531276 @default.
- W3000672272 cites W2144080918 @default.
- W3000672272 cites W2147183838 @default.
- W3000672272 cites W2162249417 @default.
- W3000672272 cites W2317022632 @default.
- W3000672272 cites W2319900543 @default.
- W3000672272 cites W2472718238 @default.
- W3000672272 cites W2475108114 @default.
- W3000672272 cites W2553747590 @default.
- W3000672272 cites W2554139698 @default.
- W3000672272 cites W2565346753 @default.
- W3000672272 cites W2574364122 @default.
- W3000672272 cites W2610418947 @default.
- W3000672272 cites W2617449571 @default.
- W3000672272 cites W2754026083 @default.
- W3000672272 cites W2801337137 @default.
- W3000672272 cites W2899909823 @default.
- W3000672272 cites W2912689160 @default.
- W3000672272 cites W2929327445 @default.
- W3000672272 cites W2941013735 @default.
- W3000672272 cites W2946302516 @default.
- W3000672272 cites W3024405666 @default.
- W3000672272 cites W4233741605 @default.
- W3000672272 cites W96231810 @default.
- W3000672272 doi "https://doi.org/10.1177/1076029619897827" @default.
- W3000672272 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7098202" @default.
- W3000672272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31908189" @default.
- W3000672272 hasPublicationYear "2020" @default.
- W3000672272 type Work @default.
- W3000672272 sameAs 3000672272 @default.
- W3000672272 citedByCount "11" @default.
- W3000672272 countsByYear W30006722722020 @default.
- W3000672272 countsByYear W30006722722021 @default.
- W3000672272 countsByYear W30006722722022 @default.
- W3000672272 countsByYear W30006722722023 @default.
- W3000672272 crossrefType "journal-article" @default.
- W3000672272 hasAuthorship W3000672272A5001000619 @default.
- W3000672272 hasAuthorship W3000672272A5021235454 @default.
- W3000672272 hasAuthorship W3000672272A5023337801 @default.
- W3000672272 hasAuthorship W3000672272A5024561419 @default.
- W3000672272 hasAuthorship W3000672272A5037989560 @default.
- W3000672272 hasAuthorship W3000672272A5046958855 @default.
- W3000672272 hasAuthorship W3000672272A5053375208 @default.
- W3000672272 hasAuthorship W3000672272A5053653312 @default.
- W3000672272 hasAuthorship W3000672272A5057816423 @default.
- W3000672272 hasAuthorship W3000672272A5077696966 @default.
- W3000672272 hasAuthorship W3000672272A5091204979 @default.
- W3000672272 hasBestOaLocation W30006722721 @default.
- W3000672272 hasConcept C118552586 @default.
- W3000672272 hasConcept C126322002 @default.
- W3000672272 hasConcept C151956035 @default.
- W3000672272 hasConcept C177713679 @default.
- W3000672272 hasConcept C194828623 @default.
- W3000672272 hasConcept C27415008 @default.
- W3000672272 hasConcept C2777120189 @default.
- W3000672272 hasConcept C2779936836 @default.
- W3000672272 hasConcept C2780724011 @default.
- W3000672272 hasConcept C71924100 @default.
- W3000672272 hasConceptScore W3000672272C118552586 @default.
- W3000672272 hasConceptScore W3000672272C126322002 @default.
- W3000672272 hasConceptScore W3000672272C151956035 @default.