Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000676377> ?p ?o ?g. }
- W3000676377 abstract "In many applications, flow measurements are usually sparse and possibly noisy. The reconstruction of a high-resolution flow field from limited and imperfect flow information is significant yet challenging. In this work, we propose an innovative physics-constrained Bayesian deep learning approach to reconstruct flow fields from sparse, noisy velocity data, where equation-based constraints are imposed through the likelihood function and uncertainty of the reconstructed flow can be estimated. Specifically, a Bayesian deep neural network is trained on sparse measurement data to capture the flow field. In the meantime, the violation of physical laws will be penalized on a large number of spatiotemporal points where measurements are not available. A non-parametric variational inference approach is applied to enable efficient physics-constrained Bayesian learning. Several test cases on idealized vascular flows with synthetic measurement data are studied to demonstrate the merit of the proposed method." @default.
- W3000676377 created "2020-01-23" @default.
- W3000676377 creator A5085043351 @default.
- W3000676377 creator A5087758954 @default.
- W3000676377 date "2020-01-15" @default.
- W3000676377 modified "2023-10-17" @default.
- W3000676377 title "Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction with Sparse and Noisy Data" @default.
- W3000676377 cites W1522301498 @default.
- W3000676377 cites W1633869374 @default.
- W3000676377 cites W1970322021 @default.
- W3000676377 cites W2014356541 @default.
- W3000676377 cites W2136211190 @default.
- W3000676377 cites W2153539727 @default.
- W3000676377 cites W2159629899 @default.
- W3000676377 cites W2164411961 @default.
- W3000676377 cites W2216406915 @default.
- W3000676377 cites W2219923319 @default.
- W3000676377 cites W2253195177 @default.
- W3000676377 cites W2315760949 @default.
- W3000676377 cites W2328603798 @default.
- W3000676377 cites W2333312111 @default.
- W3000676377 cites W2342025321 @default.
- W3000676377 cites W2508457857 @default.
- W3000676377 cites W2559481478 @default.
- W3000676377 cites W2586751944 @default.
- W3000676377 cites W2605860682 @default.
- W3000676377 cites W2767286248 @default.
- W3000676377 cites W2784249632 @default.
- W3000676377 cites W2784733489 @default.
- W3000676377 cites W2885512191 @default.
- W3000676377 cites W2890968382 @default.
- W3000676377 cites W2899283552 @default.
- W3000676377 cites W2900369848 @default.
- W3000676377 cites W2904329872 @default.
- W3000676377 cites W2907260072 @default.
- W3000676377 cites W2908541468 @default.
- W3000676377 cites W2916007581 @default.
- W3000676377 cites W2948230027 @default.
- W3000676377 cites W2951266961 @default.
- W3000676377 cites W2951392159 @default.
- W3000676377 cites W2963956018 @default.
- W3000676377 cites W2970971581 @default.
- W3000676377 cites W2986795381 @default.
- W3000676377 cites W3035079212 @default.
- W3000676377 cites W3035295279 @default.
- W3000676377 cites W3099803807 @default.
- W3000676377 cites W3100345157 @default.
- W3000676377 cites W3104009841 @default.
- W3000676377 cites W54257720 @default.
- W3000676377 doi "https://doi.org/10.48550/arxiv.2001.05542" @default.
- W3000676377 hasPublicationYear "2020" @default.
- W3000676377 type Work @default.
- W3000676377 sameAs 3000676377 @default.
- W3000676377 citedByCount "2" @default.
- W3000676377 countsByYear W30006763772020 @default.
- W3000676377 crossrefType "posted-content" @default.
- W3000676377 hasAuthorship W3000676377A5085043351 @default.
- W3000676377 hasAuthorship W3000676377A5087758954 @default.
- W3000676377 hasBestOaLocation W30006763771 @default.
- W3000676377 hasConcept C105795698 @default.
- W3000676377 hasConcept C107673813 @default.
- W3000676377 hasConcept C11413529 @default.
- W3000676377 hasConcept C117251300 @default.
- W3000676377 hasConcept C119857082 @default.
- W3000676377 hasConcept C153180895 @default.
- W3000676377 hasConcept C154945302 @default.
- W3000676377 hasConcept C160234255 @default.
- W3000676377 hasConcept C202444582 @default.
- W3000676377 hasConcept C207201462 @default.
- W3000676377 hasConcept C2524010 @default.
- W3000676377 hasConcept C2776214188 @default.
- W3000676377 hasConcept C32230216 @default.
- W3000676377 hasConcept C33923547 @default.
- W3000676377 hasConcept C38349280 @default.
- W3000676377 hasConcept C41008148 @default.
- W3000676377 hasConcept C50644808 @default.
- W3000676377 hasConcept C9652623 @default.
- W3000676377 hasConceptScore W3000676377C105795698 @default.
- W3000676377 hasConceptScore W3000676377C107673813 @default.
- W3000676377 hasConceptScore W3000676377C11413529 @default.
- W3000676377 hasConceptScore W3000676377C117251300 @default.
- W3000676377 hasConceptScore W3000676377C119857082 @default.
- W3000676377 hasConceptScore W3000676377C153180895 @default.
- W3000676377 hasConceptScore W3000676377C154945302 @default.
- W3000676377 hasConceptScore W3000676377C160234255 @default.
- W3000676377 hasConceptScore W3000676377C202444582 @default.
- W3000676377 hasConceptScore W3000676377C207201462 @default.
- W3000676377 hasConceptScore W3000676377C2524010 @default.
- W3000676377 hasConceptScore W3000676377C2776214188 @default.
- W3000676377 hasConceptScore W3000676377C32230216 @default.
- W3000676377 hasConceptScore W3000676377C33923547 @default.
- W3000676377 hasConceptScore W3000676377C38349280 @default.
- W3000676377 hasConceptScore W3000676377C41008148 @default.
- W3000676377 hasConceptScore W3000676377C50644808 @default.
- W3000676377 hasConceptScore W3000676377C9652623 @default.
- W3000676377 hasLocation W30006763771 @default.
- W3000676377 hasOpenAccess W3000676377 @default.
- W3000676377 hasPrimaryLocation W30006763771 @default.
- W3000676377 hasRelatedWork W21687502 @default.
- W3000676377 hasRelatedWork W2753218748 @default.