Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000683460> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3000683460 abstract "This letter investigates a channel assignment problem in uplink wireless communication systems. Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints. A convex optimization based algorithm is provided to obtain the optimal channel assignment, where the closed-form solution is obtained in each step. Due to high computational complexity in the convex optimization based algorithm, machine learning approaches are employed to obtain computational efficient solutions. More specifically, the data are generated by using convex optimization based algorithm and the original problem is converted to a regression problem which is addressed by the integration of convolutional neural networks (CNNs), feed-forward neural networks (FNNs), random forest and gated recurrent unit networks (GRUs). The results demonstrate that the machine learning method largely reduces the computation time with slightly compromising of prediction accuracy." @default.
- W3000683460 created "2020-01-23" @default.
- W3000683460 creator A5008359635 @default.
- W3000683460 creator A5011883566 @default.
- W3000683460 creator A5043378483 @default.
- W3000683460 creator A5066878475 @default.
- W3000683460 creator A5077634135 @default.
- W3000683460 date "2020-01-12" @default.
- W3000683460 modified "2023-09-23" @default.
- W3000683460 title "Channel Assignment in Uplink Wireless Communication using Machine Learning Approach" @default.
- W3000683460 cites W1924770834 @default.
- W3000683460 cites W2026430219 @default.
- W3000683460 cites W2295921202 @default.
- W3000683460 cites W2296319761 @default.
- W3000683460 cites W2507748565 @default.
- W3000683460 cites W2773009956 @default.
- W3000683460 cites W2776855315 @default.
- W3000683460 cites W2805072236 @default.
- W3000683460 cites W2895051796 @default.
- W3000683460 cites W2898018938 @default.
- W3000683460 cites W2936900179 @default.
- W3000683460 cites W2948960695 @default.
- W3000683460 cites W2955338161 @default.
- W3000683460 cites W2957764552 @default.
- W3000683460 cites W2974393504 @default.
- W3000683460 cites W3043543211 @default.
- W3000683460 cites W3100619529 @default.
- W3000683460 cites W3109847748 @default.
- W3000683460 cites W633277346 @default.
- W3000683460 doi "https://doi.org/10.48550/arxiv.2001.03952" @default.
- W3000683460 hasPublicationYear "2020" @default.
- W3000683460 type Work @default.
- W3000683460 sameAs 3000683460 @default.
- W3000683460 citedByCount "1" @default.
- W3000683460 countsByYear W30006834602020 @default.
- W3000683460 crossrefType "posted-content" @default.
- W3000683460 hasAuthorship W3000683460A5008359635 @default.
- W3000683460 hasAuthorship W3000683460A5011883566 @default.
- W3000683460 hasAuthorship W3000683460A5043378483 @default.
- W3000683460 hasAuthorship W3000683460A5066878475 @default.
- W3000683460 hasAuthorship W3000683460A5077634135 @default.
- W3000683460 hasBestOaLocation W30006834601 @default.
- W3000683460 hasConcept C112680207 @default.
- W3000683460 hasConcept C11413529 @default.
- W3000683460 hasConcept C126255220 @default.
- W3000683460 hasConcept C127162648 @default.
- W3000683460 hasConcept C137836250 @default.
- W3000683460 hasConcept C138660444 @default.
- W3000683460 hasConcept C154945302 @default.
- W3000683460 hasConcept C157972887 @default.
- W3000683460 hasConcept C179799912 @default.
- W3000683460 hasConcept C194146004 @default.
- W3000683460 hasConcept C2524010 @default.
- W3000683460 hasConcept C30202268 @default.
- W3000683460 hasConcept C31258907 @default.
- W3000683460 hasConcept C33923547 @default.
- W3000683460 hasConcept C41008148 @default.
- W3000683460 hasConcept C45374587 @default.
- W3000683460 hasConcept C555944384 @default.
- W3000683460 hasConcept C76155785 @default.
- W3000683460 hasConcept C85044808 @default.
- W3000683460 hasConceptScore W3000683460C112680207 @default.
- W3000683460 hasConceptScore W3000683460C11413529 @default.
- W3000683460 hasConceptScore W3000683460C126255220 @default.
- W3000683460 hasConceptScore W3000683460C127162648 @default.
- W3000683460 hasConceptScore W3000683460C137836250 @default.
- W3000683460 hasConceptScore W3000683460C138660444 @default.
- W3000683460 hasConceptScore W3000683460C154945302 @default.
- W3000683460 hasConceptScore W3000683460C157972887 @default.
- W3000683460 hasConceptScore W3000683460C179799912 @default.
- W3000683460 hasConceptScore W3000683460C194146004 @default.
- W3000683460 hasConceptScore W3000683460C2524010 @default.
- W3000683460 hasConceptScore W3000683460C30202268 @default.
- W3000683460 hasConceptScore W3000683460C31258907 @default.
- W3000683460 hasConceptScore W3000683460C33923547 @default.
- W3000683460 hasConceptScore W3000683460C41008148 @default.
- W3000683460 hasConceptScore W3000683460C45374587 @default.
- W3000683460 hasConceptScore W3000683460C555944384 @default.
- W3000683460 hasConceptScore W3000683460C76155785 @default.
- W3000683460 hasConceptScore W3000683460C85044808 @default.
- W3000683460 hasLocation W30006834601 @default.
- W3000683460 hasLocation W30006834602 @default.
- W3000683460 hasOpenAccess W3000683460 @default.
- W3000683460 hasPrimaryLocation W30006834601 @default.
- W3000683460 hasRelatedWork W1966664777 @default.
- W3000683460 hasRelatedWork W2067336310 @default.
- W3000683460 hasRelatedWork W2074638575 @default.
- W3000683460 hasRelatedWork W2317016566 @default.
- W3000683460 hasRelatedWork W2358965113 @default.
- W3000683460 hasRelatedWork W2561372086 @default.
- W3000683460 hasRelatedWork W2565453737 @default.
- W3000683460 hasRelatedWork W2619227972 @default.
- W3000683460 hasRelatedWork W2893020844 @default.
- W3000683460 hasRelatedWork W3016821709 @default.
- W3000683460 isParatext "false" @default.
- W3000683460 isRetracted "false" @default.
- W3000683460 magId "3000683460" @default.
- W3000683460 workType "article" @default.