Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000687564> ?p ?o ?g. }
- W3000687564 endingPage "103451" @default.
- W3000687564 startingPage "103451" @default.
- W3000687564 abstract "Clustering analysis is an important data mining method for data stream. In this paper, a self-adaption neighborhood density clustering method for mixed data stream is proposed. The method uses a significant metric criteria to make categorical attribute values become numeric and then the dimension of data is reduced by a nonlinear dimensionality reduction method. In the clustering method, each point is evaluated by neighborhood density. The k points are selected from the data set with maximum mutual distance after k is determined according to rough set. In addition, a new similarity measure based on neighborhood entropy is presented. The data points can be partitioned into the nearest cluster and the algorithm adaptively adjusts the clustering center points by clustering error. The experimental results show that the proposed method can obtain better clustering results than the comparison algorithms on the most data sets and the experimental results prove that the proposed algorithm is effective for data stream clustering." @default.
- W3000687564 created "2020-01-23" @default.
- W3000687564 creator A5018748397 @default.
- W3000687564 creator A5026688050 @default.
- W3000687564 creator A5077729205 @default.
- W3000687564 creator A5079048949 @default.
- W3000687564 date "2020-03-01" @default.
- W3000687564 modified "2023-10-16" @default.
- W3000687564 title "Self-adaption neighborhood density clustering method for mixed data stream with concept drift" @default.
- W3000687564 cites W182707955 @default.
- W3000687564 cites W1840300771 @default.
- W3000687564 cites W2001474264 @default.
- W3000687564 cites W2004625705 @default.
- W3000687564 cites W2015960758 @default.
- W3000687564 cites W2024172683 @default.
- W3000687564 cites W2055266411 @default.
- W3000687564 cites W2067191022 @default.
- W3000687564 cites W2071765874 @default.
- W3000687564 cites W2077183117 @default.
- W3000687564 cites W2086438841 @default.
- W3000687564 cites W2088340225 @default.
- W3000687564 cites W2089137303 @default.
- W3000687564 cites W2089616658 @default.
- W3000687564 cites W2092335550 @default.
- W3000687564 cites W2117528467 @default.
- W3000687564 cites W2119939946 @default.
- W3000687564 cites W2139825270 @default.
- W3000687564 cites W2148521312 @default.
- W3000687564 cites W2158633287 @default.
- W3000687564 cites W2165232124 @default.
- W3000687564 cites W2169528473 @default.
- W3000687564 cites W2343620495 @default.
- W3000687564 cites W2485094760 @default.
- W3000687564 cites W2513367535 @default.
- W3000687564 cites W2587703207 @default.
- W3000687564 cites W2597349510 @default.
- W3000687564 cites W3141507694 @default.
- W3000687564 cites W4244622952 @default.
- W3000687564 doi "https://doi.org/10.1016/j.engappai.2019.103451" @default.
- W3000687564 hasPublicationYear "2020" @default.
- W3000687564 type Work @default.
- W3000687564 sameAs 3000687564 @default.
- W3000687564 citedByCount "11" @default.
- W3000687564 countsByYear W30006875642020 @default.
- W3000687564 countsByYear W30006875642021 @default.
- W3000687564 countsByYear W30006875642022 @default.
- W3000687564 countsByYear W30006875642023 @default.
- W3000687564 crossrefType "journal-article" @default.
- W3000687564 hasAuthorship W3000687564A5018748397 @default.
- W3000687564 hasAuthorship W3000687564A5026688050 @default.
- W3000687564 hasAuthorship W3000687564A5077729205 @default.
- W3000687564 hasAuthorship W3000687564A5079048949 @default.
- W3000687564 hasConcept C104047586 @default.
- W3000687564 hasConcept C115328559 @default.
- W3000687564 hasConcept C124101348 @default.
- W3000687564 hasConcept C149872217 @default.
- W3000687564 hasConcept C153180895 @default.
- W3000687564 hasConcept C154945302 @default.
- W3000687564 hasConcept C17212007 @default.
- W3000687564 hasConcept C193143536 @default.
- W3000687564 hasConcept C22648726 @default.
- W3000687564 hasConcept C33704608 @default.
- W3000687564 hasConcept C41008148 @default.
- W3000687564 hasConcept C46576248 @default.
- W3000687564 hasConcept C73555534 @default.
- W3000687564 hasConcept C94641424 @default.
- W3000687564 hasConceptScore W3000687564C104047586 @default.
- W3000687564 hasConceptScore W3000687564C115328559 @default.
- W3000687564 hasConceptScore W3000687564C124101348 @default.
- W3000687564 hasConceptScore W3000687564C149872217 @default.
- W3000687564 hasConceptScore W3000687564C153180895 @default.
- W3000687564 hasConceptScore W3000687564C154945302 @default.
- W3000687564 hasConceptScore W3000687564C17212007 @default.
- W3000687564 hasConceptScore W3000687564C193143536 @default.
- W3000687564 hasConceptScore W3000687564C22648726 @default.
- W3000687564 hasConceptScore W3000687564C33704608 @default.
- W3000687564 hasConceptScore W3000687564C41008148 @default.
- W3000687564 hasConceptScore W3000687564C46576248 @default.
- W3000687564 hasConceptScore W3000687564C73555534 @default.
- W3000687564 hasConceptScore W3000687564C94641424 @default.
- W3000687564 hasFunder F4320315254 @default.
- W3000687564 hasFunder F4320335777 @default.
- W3000687564 hasFunder F4320335787 @default.
- W3000687564 hasLocation W30006875641 @default.
- W3000687564 hasOpenAccess W3000687564 @default.
- W3000687564 hasPrimaryLocation W30006875641 @default.
- W3000687564 hasRelatedWork W2163563073 @default.
- W3000687564 hasRelatedWork W2169341839 @default.
- W3000687564 hasRelatedWork W2352963450 @default.
- W3000687564 hasRelatedWork W2587938955 @default.
- W3000687564 hasRelatedWork W2607902515 @default.
- W3000687564 hasRelatedWork W2738096727 @default.
- W3000687564 hasRelatedWork W3046546608 @default.
- W3000687564 hasRelatedWork W4240938748 @default.
- W3000687564 hasRelatedWork W4310575853 @default.
- W3000687564 hasRelatedWork W1491908038 @default.
- W3000687564 hasVolume "89" @default.
- W3000687564 isParatext "false" @default.