Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000730462> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3000730462 abstract "Fossil fuels paved the way to prosperity for modern societies, yet alarmingly, we can exploit our planet’s soil only so much. Renewable energy sources inherit the burden to quench our thirst for energy, and to reduce the impact on our environment simultaneously. However, renewables are inherently volatile; they introduce uncertainties. What is the effect of uncertainties on the operation and planning of power systems? What is a rigorous mathematical formulation of the problems at hand? What is a coherent methodology to approaching power system problems under uncertainty? These are among the questions that motivate the present thesis that provides a collection of methods for quantification for (optimization of) power systems.We cover power flow (PF) and optimal power flow (OPF) under (as well as specific derivative problems). Under uncertainty---we view uncertainty as continuous random variables of finite variance---the state of the power system is no longer certain, but a random variable. We formulate PF and OPF problems in terms of random variables, thusly exposing the infinite-dimensional nature in terms of L2-functions. For each problem formulation we discuss a solution methodology that renders the problem tractable: we view the problem as a mapping under uncertainty; uncertainties are propagated through a known mapping. The method we employ to propagate uncertainties is called polynomial chaos expansion (PCE), a Hilbert space technique that allows to represent random variables of finite variance in terms of real-valued coefficients.The main contribution of this thesis is to provide a rigorous formulation of several PF and OPF problems under in terms of infinite-dimensional problems of random variables, and to provide a coherent methodology to tackle these problems via PCE. As numerical methods are moot without numerical software another contribution of this thesis is to provide PolyChaos.jl: an open source software package for orthogonal polynomials, quadrature rules, and PCE written in the Julia programming language." @default.
- W3000730462 created "2020-01-23" @default.
- W3000730462 creator A5059695632 @default.
- W3000730462 date "2020-01-01" @default.
- W3000730462 modified "2023-09-23" @default.
- W3000730462 title "Uncertainty Quantification via Polynomial Chaos Expansion – Methods and Applications for Optimization of Power Systems" @default.
- W3000730462 doi "https://doi.org/10.5445/ir/1000104661" @default.
- W3000730462 hasPublicationYear "2020" @default.
- W3000730462 type Work @default.
- W3000730462 sameAs 3000730462 @default.
- W3000730462 citedByCount "0" @default.
- W3000730462 crossrefType "journal-article" @default.
- W3000730462 hasAuthorship W3000730462A5059695632 @default.
- W3000730462 hasConcept C105795698 @default.
- W3000730462 hasConcept C119857082 @default.
- W3000730462 hasConcept C121332964 @default.
- W3000730462 hasConcept C126255220 @default.
- W3000730462 hasConcept C137836250 @default.
- W3000730462 hasConcept C163258240 @default.
- W3000730462 hasConcept C19499675 @default.
- W3000730462 hasConcept C197656079 @default.
- W3000730462 hasConcept C32230216 @default.
- W3000730462 hasConcept C33923547 @default.
- W3000730462 hasConcept C41008148 @default.
- W3000730462 hasConcept C62520636 @default.
- W3000730462 hasConcept C89227174 @default.
- W3000730462 hasConceptScore W3000730462C105795698 @default.
- W3000730462 hasConceptScore W3000730462C119857082 @default.
- W3000730462 hasConceptScore W3000730462C121332964 @default.
- W3000730462 hasConceptScore W3000730462C126255220 @default.
- W3000730462 hasConceptScore W3000730462C137836250 @default.
- W3000730462 hasConceptScore W3000730462C163258240 @default.
- W3000730462 hasConceptScore W3000730462C19499675 @default.
- W3000730462 hasConceptScore W3000730462C197656079 @default.
- W3000730462 hasConceptScore W3000730462C32230216 @default.
- W3000730462 hasConceptScore W3000730462C33923547 @default.
- W3000730462 hasConceptScore W3000730462C41008148 @default.
- W3000730462 hasConceptScore W3000730462C62520636 @default.
- W3000730462 hasConceptScore W3000730462C89227174 @default.
- W3000730462 hasLocation W30007304621 @default.
- W3000730462 hasOpenAccess W3000730462 @default.
- W3000730462 hasPrimaryLocation W30007304621 @default.
- W3000730462 hasRelatedWork W1562045826 @default.
- W3000730462 hasRelatedWork W1636501551 @default.
- W3000730462 hasRelatedWork W1978701569 @default.
- W3000730462 hasRelatedWork W2003929675 @default.
- W3000730462 hasRelatedWork W2016702053 @default.
- W3000730462 hasRelatedWork W2116029409 @default.
- W3000730462 hasRelatedWork W2192870712 @default.
- W3000730462 hasRelatedWork W2559798425 @default.
- W3000730462 hasRelatedWork W2567208934 @default.
- W3000730462 hasRelatedWork W2571545337 @default.
- W3000730462 hasRelatedWork W2622903347 @default.
- W3000730462 hasRelatedWork W2760934243 @default.
- W3000730462 hasRelatedWork W28242643 @default.
- W3000730462 hasRelatedWork W2883887264 @default.
- W3000730462 hasRelatedWork W2905662094 @default.
- W3000730462 hasRelatedWork W2947336722 @default.
- W3000730462 hasRelatedWork W2953654130 @default.
- W3000730462 hasRelatedWork W2964217050 @default.
- W3000730462 hasRelatedWork W3034809398 @default.
- W3000730462 hasRelatedWork W3182338134 @default.
- W3000730462 isParatext "false" @default.
- W3000730462 isRetracted "false" @default.
- W3000730462 magId "3000730462" @default.
- W3000730462 workType "article" @default.