Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000747706> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3000747706 abstract "The problem of generating surgery schedules is formulated as a mathematical model with probabilistic constraints. The approach presented is a new method for tackling probabilistic constraints using machine learning. The technique is inspired by models that use slacks in capacity planning. Essentially support vector classification is used to learn a linear constraint that will replace the probabilistic constraint. The data used to learn this constraint is labeled using Monte Carlo simulations. This data is iteratively discovered, during the optimization procedure, and augmented to the training set. The linear support vector classifier is then updated during search, until a feasible solution is discovered. The stochastic surgery model presented is inspired by real challenges faced by many hospitals today and tested on real-life data." @default.
- W3000747706 created "2020-01-30" @default.
- W3000747706 creator A5065427325 @default.
- W3000747706 date "2020-01-01" @default.
- W3000747706 modified "2023-10-06" @default.
- W3000747706 title "Learning Probabilistic Constraints for Surgery Scheduling Using a Support Vector Machine" @default.
- W3000747706 cites W1465170264 @default.
- W3000747706 cites W1975639104 @default.
- W3000747706 cites W1984617225 @default.
- W3000747706 cites W2003633238 @default.
- W3000747706 cites W2011037478 @default.
- W3000747706 cites W2012489386 @default.
- W3000747706 cites W2115157093 @default.
- W3000747706 cites W2131039757 @default.
- W3000747706 cites W2335011520 @default.
- W3000747706 cites W2516398414 @default.
- W3000747706 cites W2524990458 @default.
- W3000747706 cites W2556612714 @default.
- W3000747706 cites W2559060079 @default.
- W3000747706 cites W2582786905 @default.
- W3000747706 cites W2800580088 @default.
- W3000747706 doi "https://doi.org/10.1007/978-3-030-38629-0_10" @default.
- W3000747706 hasPublicationYear "2020" @default.
- W3000747706 type Work @default.
- W3000747706 sameAs 3000747706 @default.
- W3000747706 citedByCount "0" @default.
- W3000747706 crossrefType "book-chapter" @default.
- W3000747706 hasAuthorship W3000747706A5065427325 @default.
- W3000747706 hasConcept C119857082 @default.
- W3000747706 hasConcept C12267149 @default.
- W3000747706 hasConcept C126255220 @default.
- W3000747706 hasConcept C154945302 @default.
- W3000747706 hasConcept C206729178 @default.
- W3000747706 hasConcept C2524010 @default.
- W3000747706 hasConcept C2776036281 @default.
- W3000747706 hasConcept C33923547 @default.
- W3000747706 hasConcept C41008148 @default.
- W3000747706 hasConcept C49937458 @default.
- W3000747706 hasConceptScore W3000747706C119857082 @default.
- W3000747706 hasConceptScore W3000747706C12267149 @default.
- W3000747706 hasConceptScore W3000747706C126255220 @default.
- W3000747706 hasConceptScore W3000747706C154945302 @default.
- W3000747706 hasConceptScore W3000747706C206729178 @default.
- W3000747706 hasConceptScore W3000747706C2524010 @default.
- W3000747706 hasConceptScore W3000747706C2776036281 @default.
- W3000747706 hasConceptScore W3000747706C33923547 @default.
- W3000747706 hasConceptScore W3000747706C41008148 @default.
- W3000747706 hasConceptScore W3000747706C49937458 @default.
- W3000747706 hasLocation W30007477061 @default.
- W3000747706 hasOpenAccess W3000747706 @default.
- W3000747706 hasPrimaryLocation W30007477061 @default.
- W3000747706 hasRelatedWork W3172851134 @default.
- W3000747706 hasRelatedWork W3189031306 @default.
- W3000747706 isParatext "false" @default.
- W3000747706 isRetracted "false" @default.
- W3000747706 magId "3000747706" @default.
- W3000747706 workType "book-chapter" @default.