Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000748319> ?p ?o ?g. }
- W3000748319 endingPage "19637" @default.
- W3000748319 startingPage "19629" @default.
- W3000748319 abstract "With the rapid development of the mobile internet of things (IoTs) and mobile sensing devices, a large amount of mobile computing-oriented applications have attracted attention both from industry and academia. Deep learning based methods have achieved great success in artificial intelligence (AI) oriented applications. To advance the development of AI-based IoT systems, effective and efficient algorithms are in urgent need for IoT Edge Computing. Time-series data classification is an ongoing problem in applications for mobile devices (e.g. music genre classification on mobile phones). However, the traditional methods require field expertise to extract handcrafted features from the time-series data. Deep learning has been demonstrated to be effective and efficient in this kind of data. Nevertheless, the existing works neglect some of the sequential relationships found in the time-series data, which are significant for time-series data classification. Considering the aforementioned limitations, we propose a hybrid architecture, named the parallel recurrent convolutional neural network (PRCNN). The PRCNN is an end-to-end training network that combines feature extraction and time-series data classification in one stage. The parallel CNN and Bi-RNN blocks focus on extracting the spatial features and temporal frame orders, respectively, and the outputs of two blocks are fused into one powerful representation of the time-series data. Then, the syncretic vector is fed into the softmax function for classification. The parallel network structure guarantees that the extracted features are robust enough to represent the time-series data. Moreover, the experimental results demonstrate that our proposed architecture outperforms the previous approaches applied to the same datasets. We also take the music data as an example to conduct contrastive experiments to verify that our additional parallel Bi-RNN block can improve the performance of time-series classification compared with utilizing CNNs alone." @default.
- W3000748319 created "2020-01-30" @default.
- W3000748319 creator A5024442284 @default.
- W3000748319 creator A5043798820 @default.
- W3000748319 creator A5049624128 @default.
- W3000748319 creator A5077729205 @default.
- W3000748319 creator A5088026710 @default.
- W3000748319 date "2020-01-01" @default.
- W3000748319 modified "2023-10-18" @default.
- W3000748319 title "Parallel Recurrent Convolutional Neural Networks-Based Music Genre Classification Method for Mobile Devices" @default.
- W3000748319 cites W1621802500 @default.
- W3000748319 cites W1884731728 @default.
- W3000748319 cites W1995396582 @default.
- W3000748319 cites W2027035856 @default.
- W3000748319 cites W2031293912 @default.
- W3000748319 cites W2041084171 @default.
- W3000748319 cites W2059652044 @default.
- W3000748319 cites W2062617588 @default.
- W3000748319 cites W2071103260 @default.
- W3000748319 cites W2107430826 @default.
- W3000748319 cites W2111072639 @default.
- W3000748319 cites W2131774270 @default.
- W3000748319 cites W2133824856 @default.
- W3000748319 cites W2144354855 @default.
- W3000748319 cites W2153320597 @default.
- W3000748319 cites W2194775991 @default.
- W3000748319 cites W2283717164 @default.
- W3000748319 cites W2408458745 @default.
- W3000748319 cites W2437181147 @default.
- W3000748319 cites W2514413323 @default.
- W3000748319 cites W2605117450 @default.
- W3000748319 cites W2618530766 @default.
- W3000748319 cites W2766372859 @default.
- W3000748319 cites W2785985841 @default.
- W3000748319 cites W2799787995 @default.
- W3000748319 cites W2809034148 @default.
- W3000748319 cites W2884060612 @default.
- W3000748319 cites W2893415549 @default.
- W3000748319 cites W2902753276 @default.
- W3000748319 cites W2923769473 @default.
- W3000748319 cites W2945828882 @default.
- W3000748319 cites W2951415009 @default.
- W3000748319 cites W2953099546 @default.
- W3000748319 cites W2963451564 @default.
- W3000748319 cites W2964126331 @default.
- W3000748319 cites W2964132430 @default.
- W3000748319 cites W2964199361 @default.
- W3000748319 cites W2971368391 @default.
- W3000748319 cites W2971395108 @default.
- W3000748319 cites W2972624900 @default.
- W3000748319 cites W2973607862 @default.
- W3000748319 cites W2978174822 @default.
- W3000748319 cites W2979462950 @default.
- W3000748319 cites W4212883601 @default.
- W3000748319 cites W4254816979 @default.
- W3000748319 doi "https://doi.org/10.1109/access.2020.2968170" @default.
- W3000748319 hasPublicationYear "2020" @default.
- W3000748319 type Work @default.
- W3000748319 sameAs 3000748319 @default.
- W3000748319 citedByCount "28" @default.
- W3000748319 countsByYear W30007483192020 @default.
- W3000748319 countsByYear W30007483192021 @default.
- W3000748319 countsByYear W30007483192022 @default.
- W3000748319 countsByYear W30007483192023 @default.
- W3000748319 crossrefType "journal-article" @default.
- W3000748319 hasAuthorship W3000748319A5024442284 @default.
- W3000748319 hasAuthorship W3000748319A5043798820 @default.
- W3000748319 hasAuthorship W3000748319A5049624128 @default.
- W3000748319 hasAuthorship W3000748319A5077729205 @default.
- W3000748319 hasAuthorship W3000748319A5088026710 @default.
- W3000748319 hasBestOaLocation W30007483191 @default.
- W3000748319 hasConcept C108583219 @default.
- W3000748319 hasConcept C111919701 @default.
- W3000748319 hasConcept C119857082 @default.
- W3000748319 hasConcept C124101348 @default.
- W3000748319 hasConcept C147168706 @default.
- W3000748319 hasConcept C154945302 @default.
- W3000748319 hasConcept C186967261 @default.
- W3000748319 hasConcept C188441871 @default.
- W3000748319 hasConcept C41008148 @default.
- W3000748319 hasConcept C50644808 @default.
- W3000748319 hasConcept C52622490 @default.
- W3000748319 hasConcept C81363708 @default.
- W3000748319 hasConceptScore W3000748319C108583219 @default.
- W3000748319 hasConceptScore W3000748319C111919701 @default.
- W3000748319 hasConceptScore W3000748319C119857082 @default.
- W3000748319 hasConceptScore W3000748319C124101348 @default.
- W3000748319 hasConceptScore W3000748319C147168706 @default.
- W3000748319 hasConceptScore W3000748319C154945302 @default.
- W3000748319 hasConceptScore W3000748319C186967261 @default.
- W3000748319 hasConceptScore W3000748319C188441871 @default.
- W3000748319 hasConceptScore W3000748319C41008148 @default.
- W3000748319 hasConceptScore W3000748319C50644808 @default.
- W3000748319 hasConceptScore W3000748319C52622490 @default.
- W3000748319 hasConceptScore W3000748319C81363708 @default.
- W3000748319 hasFunder F4320321001 @default.
- W3000748319 hasLocation W30007483191 @default.
- W3000748319 hasOpenAccess W3000748319 @default.