Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000769608> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3000769608 endingPage "2973" @default.
- W3000769608 startingPage "2960" @default.
- W3000769608 abstract "To support the ever increasing number of devices in massive multiple-input multiple-output (mMIMO) systems, an excessive amount of overhead is required for conventional orthogonal pilot-based channel estimation schemes. To circumvent this fundamental constraint, we design a machine learning (ML)-based time-division duplex scheme in which channel state information (CSI) can be obtained by leveraging the temporal channel correlation. The presence of the temporal channel correlation is due to the stationarity of the propagation environment across time. The proposed ML-based predictors involve a pattern extraction implemented via a convolutional neural network, and a CSI predictor realized by an autoregressive (AR) predictor or an autoregressive network with exogenous inputs recurrent neural network. Closed-form expressions for the user uplink and downlink achievable spectral efficiency and average per-user throughput are provided for the ML-based time division duplex schemes. Our numerical results demonstrate that the proposed ML-based predictors can remarkably improve the prediction quality for both low and high mobility scenarios, and offer great performance gains on the per-user achievable throughput." @default.
- W3000769608 created "2020-01-30" @default.
- W3000769608 creator A5035876091 @default.
- W3000769608 creator A5048037778 @default.
- W3000769608 creator A5052919611 @default.
- W3000769608 date "2020-05-01" @default.
- W3000769608 modified "2023-10-12" @default.
- W3000769608 title "Machine Learning-Based Channel Prediction in Massive MIMO With Channel Aging" @default.
- W3000769608 cites W1574260077 @default.
- W3000769608 cites W1640112328 @default.
- W3000769608 cites W1832693441 @default.
- W3000769608 cites W1922937245 @default.
- W3000769608 cites W1963882359 @default.
- W3000769608 cites W1984844660 @default.
- W3000769608 cites W2014447384 @default.
- W3000769608 cites W2027563534 @default.
- W3000769608 cites W2064675550 @default.
- W3000769608 cites W2103452139 @default.
- W3000769608 cites W2105118201 @default.
- W3000769608 cites W2120615054 @default.
- W3000769608 cites W2121315337 @default.
- W3000769608 cites W2123252081 @default.
- W3000769608 cites W2125838225 @default.
- W3000769608 cites W2157293015 @default.
- W3000769608 cites W2157331557 @default.
- W3000769608 cites W2166627902 @default.
- W3000769608 cites W2242218935 @default.
- W3000769608 cites W2244956674 @default.
- W3000769608 cites W2286275639 @default.
- W3000769608 cites W2557677434 @default.
- W3000769608 cites W2663774998 @default.
- W3000769608 cites W2706056020 @default.
- W3000769608 cites W2886124254 @default.
- W3000769608 cites W2963101290 @default.
- W3000769608 cites W2963190722 @default.
- W3000769608 cites W2963889719 @default.
- W3000769608 cites W2963947725 @default.
- W3000769608 cites W2970195506 @default.
- W3000769608 cites W3106510787 @default.
- W3000769608 cites W4293263215 @default.
- W3000769608 doi "https://doi.org/10.1109/twc.2020.2969627" @default.
- W3000769608 hasPublicationYear "2020" @default.
- W3000769608 type Work @default.
- W3000769608 sameAs 3000769608 @default.
- W3000769608 citedByCount "72" @default.
- W3000769608 countsByYear W30007696082019 @default.
- W3000769608 countsByYear W30007696082020 @default.
- W3000769608 countsByYear W30007696082021 @default.
- W3000769608 countsByYear W30007696082022 @default.
- W3000769608 countsByYear W30007696082023 @default.
- W3000769608 crossrefType "journal-article" @default.
- W3000769608 hasAuthorship W3000769608A5035876091 @default.
- W3000769608 hasAuthorship W3000769608A5048037778 @default.
- W3000769608 hasAuthorship W3000769608A5052919611 @default.
- W3000769608 hasBestOaLocation W30007696082 @default.
- W3000769608 hasConcept C119857082 @default.
- W3000769608 hasConcept C127162648 @default.
- W3000769608 hasConcept C154945302 @default.
- W3000769608 hasConcept C160562895 @default.
- W3000769608 hasConcept C207987634 @default.
- W3000769608 hasConcept C41008148 @default.
- W3000769608 hasConcept C76155785 @default.
- W3000769608 hasConceptScore W3000769608C119857082 @default.
- W3000769608 hasConceptScore W3000769608C127162648 @default.
- W3000769608 hasConceptScore W3000769608C154945302 @default.
- W3000769608 hasConceptScore W3000769608C160562895 @default.
- W3000769608 hasConceptScore W3000769608C207987634 @default.
- W3000769608 hasConceptScore W3000769608C41008148 @default.
- W3000769608 hasConceptScore W3000769608C76155785 @default.
- W3000769608 hasFunder F4320314731 @default.
- W3000769608 hasFunder F4320319993 @default.
- W3000769608 hasIssue "5" @default.
- W3000769608 hasLocation W30007696081 @default.
- W3000769608 hasLocation W30007696082 @default.
- W3000769608 hasOpenAccess W3000769608 @default.
- W3000769608 hasPrimaryLocation W30007696081 @default.
- W3000769608 hasRelatedWork W2052190004 @default.
- W3000769608 hasRelatedWork W2112089768 @default.
- W3000769608 hasRelatedWork W2137509205 @default.
- W3000769608 hasRelatedWork W2957592028 @default.
- W3000769608 hasRelatedWork W3044638792 @default.
- W3000769608 hasRelatedWork W3169820186 @default.
- W3000769608 hasRelatedWork W4210398126 @default.
- W3000769608 hasRelatedWork W4293868361 @default.
- W3000769608 hasRelatedWork W4315777540 @default.
- W3000769608 hasRelatedWork W2885896868 @default.
- W3000769608 hasVolume "19" @default.
- W3000769608 isParatext "false" @default.
- W3000769608 isRetracted "false" @default.
- W3000769608 magId "3000769608" @default.
- W3000769608 workType "article" @default.