Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000798229> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3000798229 abstract "Purpose. The aim of the article is experimental finding of the optimal number of clusters and their characteristic features for interpreted (understandable) segmentation of business structures by the level of digital maturity by several methods; comparing the results obtained by different methods and determining the most effective for a particular data analysis task. Methodology of research. Two clustering methods are used in the study: 1) using the Data Mining add-in for MS Excel spread sheets. Clustering capabilities in MS Excel are represented by iterative algorithms: k-means and Expectation-Maximization. For the reference, it was determined EM-algorithm; 2) using the functions of libraries for machine learning Python programming language. Findings. An experimental comparison of the use of two approaches to the clustering of respondents according to the results of online questionnaire using Google Forms service – hard and soft clustering, is conducted. Hard clustering was implemented using Python tools using the hierarchical agglomerative method, soft using the Data Mining add-in MS Excel and using the iterative EM method. A comparative analysis of the results obtained by the two methods showed that the agglomerative hierarchical clustering method is an effective method for solving the problem of clustering of mixed-type data obtained from the survey of respondents. Originality. An algorithm for solving the problem of respondents' clustering according to the results of online survey is proposed, including the stages of collection, preparation of data, obtaining the main results and development of future goals, which will help to solve the problem of processing and clustering of data of mixed type and to provide higher productivity of analytical data and analytical data. Practical value. This approach can be used to develop a Digital Transformation Index for domestic business structures and to measure their digital maturity, which will enhance their economic potential and therefore the country's economy. Key words: digital maturity; digital transformation; business structures; clustering methods; mixed-type data; surveys." @default.
- W3000798229 created "2020-01-30" @default.
- W3000798229 creator A5018887377 @default.
- W3000798229 date "2019-11-01" @default.
- W3000798229 modified "2023-10-16" @default.
- W3000798229 title "Clustering of business structures by the level of their digital maturity using two approaches: iterative and hierarchical" @default.
- W3000798229 cites W2087371509 @default.
- W3000798229 cites W3016102536 @default.
- W3000798229 doi "https://doi.org/10.37332/2309-1533.2019.7-8.10" @default.
- W3000798229 hasPublicationYear "2019" @default.
- W3000798229 type Work @default.
- W3000798229 sameAs 3000798229 @default.
- W3000798229 citedByCount "0" @default.
- W3000798229 crossrefType "journal-article" @default.
- W3000798229 hasAuthorship W3000798229A5018887377 @default.
- W3000798229 hasBestOaLocation W30007982291 @default.
- W3000798229 hasConcept C104047586 @default.
- W3000798229 hasConcept C111919701 @default.
- W3000798229 hasConcept C119857082 @default.
- W3000798229 hasConcept C124101348 @default.
- W3000798229 hasConcept C17212007 @default.
- W3000798229 hasConcept C33704608 @default.
- W3000798229 hasConcept C41008148 @default.
- W3000798229 hasConcept C519991488 @default.
- W3000798229 hasConcept C73555534 @default.
- W3000798229 hasConcept C92835128 @default.
- W3000798229 hasConcept C94641424 @default.
- W3000798229 hasConceptScore W3000798229C104047586 @default.
- W3000798229 hasConceptScore W3000798229C111919701 @default.
- W3000798229 hasConceptScore W3000798229C119857082 @default.
- W3000798229 hasConceptScore W3000798229C124101348 @default.
- W3000798229 hasConceptScore W3000798229C17212007 @default.
- W3000798229 hasConceptScore W3000798229C33704608 @default.
- W3000798229 hasConceptScore W3000798229C41008148 @default.
- W3000798229 hasConceptScore W3000798229C519991488 @default.
- W3000798229 hasConceptScore W3000798229C73555534 @default.
- W3000798229 hasConceptScore W3000798229C92835128 @default.
- W3000798229 hasConceptScore W3000798229C94641424 @default.
- W3000798229 hasLocation W30007982291 @default.
- W3000798229 hasOpenAccess W3000798229 @default.
- W3000798229 hasPrimaryLocation W30007982291 @default.
- W3000798229 hasRelatedWork W10762142 @default.
- W3000798229 hasRelatedWork W12704174 @default.
- W3000798229 hasRelatedWork W209552 @default.
- W3000798229 hasRelatedWork W2390764 @default.
- W3000798229 hasRelatedWork W3960955 @default.
- W3000798229 hasRelatedWork W441046 @default.
- W3000798229 hasRelatedWork W5539457 @default.
- W3000798229 hasRelatedWork W6001216 @default.
- W3000798229 hasRelatedWork W6821745 @default.
- W3000798229 hasRelatedWork W7597812 @default.
- W3000798229 isParatext "false" @default.
- W3000798229 isRetracted "false" @default.
- W3000798229 magId "3000798229" @default.
- W3000798229 workType "article" @default.