Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000804940> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3000804940 abstract "The Canonical Correlation analysis (CCA), such as linear CCA and Kernel Canonical Correlation Analysis (KCCA) are efficient methods for dimensionality reduction (DR). In this paper, a method of sample factoring induced KCCA is proposed. Different from traditional KCCA method, sample factors are introduced to impose penalties on the sample spaces to suppress the effect of corrupt data samples. By using a sample factoring strategies: cosine similarity metrics, the relationships between data samples and the principal projections are iteratively learned in order to obtain better correlation projections. By this way, the authentic and corrupt data samples can be discriminated and the impact of the corrupt data samples can be suppressed. Extensive experiments conducted on face image datasets, such as Yale, AR, show our approach has better classification and DR performance than that of linear CCA and KCCA, especially in noisy datasets." @default.
- W3000804940 created "2020-01-30" @default.
- W3000804940 creator A5024379128 @default.
- W3000804940 creator A5026389974 @default.
- W3000804940 creator A5043480191 @default.
- W3000804940 creator A5061867216 @default.
- W3000804940 date "2019-01-01" @default.
- W3000804940 modified "2023-09-26" @default.
- W3000804940 title "SF-KCCA: Sample Factoring Induced Kernel Canonical Correlation Analysis" @default.
- W3000804940 cites W1778203727 @default.
- W3000804940 cites W1968206427 @default.
- W3000804940 cites W1984953230 @default.
- W3000804940 cites W2011390239 @default.
- W3000804940 cites W2035163205 @default.
- W3000804940 cites W2035205472 @default.
- W3000804940 cites W2041509689 @default.
- W3000804940 cites W2057888725 @default.
- W3000804940 cites W2063036810 @default.
- W3000804940 cites W2065547122 @default.
- W3000804940 cites W2083095455 @default.
- W3000804940 cites W2100560442 @default.
- W3000804940 cites W2121647436 @default.
- W3000804940 cites W2167769138 @default.
- W3000804940 cites W2168380057 @default.
- W3000804940 cites W2512801282 @default.
- W3000804940 cites W2748169822 @default.
- W3000804940 cites W2754149389 @default.
- W3000804940 doi "https://doi.org/10.1007/978-3-030-37429-7_59" @default.
- W3000804940 hasPublicationYear "2019" @default.
- W3000804940 type Work @default.
- W3000804940 sameAs 3000804940 @default.
- W3000804940 citedByCount "1" @default.
- W3000804940 countsByYear W30008049402021 @default.
- W3000804940 crossrefType "book-chapter" @default.
- W3000804940 hasAuthorship W3000804940A5024379128 @default.
- W3000804940 hasAuthorship W3000804940A5026389974 @default.
- W3000804940 hasAuthorship W3000804940A5043480191 @default.
- W3000804940 hasAuthorship W3000804940A5061867216 @default.
- W3000804940 hasConcept C10138342 @default.
- W3000804940 hasConcept C103278499 @default.
- W3000804940 hasConcept C111030470 @default.
- W3000804940 hasConcept C114614502 @default.
- W3000804940 hasConcept C115961682 @default.
- W3000804940 hasConcept C117220453 @default.
- W3000804940 hasConcept C124101348 @default.
- W3000804940 hasConcept C153180895 @default.
- W3000804940 hasConcept C153874254 @default.
- W3000804940 hasConcept C154945302 @default.
- W3000804940 hasConcept C162324750 @default.
- W3000804940 hasConcept C177225278 @default.
- W3000804940 hasConcept C185592680 @default.
- W3000804940 hasConcept C198531522 @default.
- W3000804940 hasConcept C2524010 @default.
- W3000804940 hasConcept C27438332 @default.
- W3000804940 hasConcept C2780762811 @default.
- W3000804940 hasConcept C33923547 @default.
- W3000804940 hasConcept C41008148 @default.
- W3000804940 hasConcept C43617362 @default.
- W3000804940 hasConcept C70518039 @default.
- W3000804940 hasConcept C74193536 @default.
- W3000804940 hasConceptScore W3000804940C10138342 @default.
- W3000804940 hasConceptScore W3000804940C103278499 @default.
- W3000804940 hasConceptScore W3000804940C111030470 @default.
- W3000804940 hasConceptScore W3000804940C114614502 @default.
- W3000804940 hasConceptScore W3000804940C115961682 @default.
- W3000804940 hasConceptScore W3000804940C117220453 @default.
- W3000804940 hasConceptScore W3000804940C124101348 @default.
- W3000804940 hasConceptScore W3000804940C153180895 @default.
- W3000804940 hasConceptScore W3000804940C153874254 @default.
- W3000804940 hasConceptScore W3000804940C154945302 @default.
- W3000804940 hasConceptScore W3000804940C162324750 @default.
- W3000804940 hasConceptScore W3000804940C177225278 @default.
- W3000804940 hasConceptScore W3000804940C185592680 @default.
- W3000804940 hasConceptScore W3000804940C198531522 @default.
- W3000804940 hasConceptScore W3000804940C2524010 @default.
- W3000804940 hasConceptScore W3000804940C27438332 @default.
- W3000804940 hasConceptScore W3000804940C2780762811 @default.
- W3000804940 hasConceptScore W3000804940C33923547 @default.
- W3000804940 hasConceptScore W3000804940C41008148 @default.
- W3000804940 hasConceptScore W3000804940C43617362 @default.
- W3000804940 hasConceptScore W3000804940C70518039 @default.
- W3000804940 hasConceptScore W3000804940C74193536 @default.
- W3000804940 hasLocation W30008049401 @default.
- W3000804940 hasOpenAccess W3000804940 @default.
- W3000804940 hasPrimaryLocation W30008049401 @default.
- W3000804940 hasRelatedWork W2095834362 @default.
- W3000804940 hasRelatedWork W2127183517 @default.
- W3000804940 hasRelatedWork W2148585830 @default.
- W3000804940 hasRelatedWork W2169954946 @default.
- W3000804940 hasRelatedWork W2172019219 @default.
- W3000804940 hasRelatedWork W2295974754 @default.
- W3000804940 hasRelatedWork W2772564119 @default.
- W3000804940 hasRelatedWork W2891011241 @default.
- W3000804940 hasRelatedWork W3000804940 @default.
- W3000804940 hasRelatedWork W3211035526 @default.
- W3000804940 isParatext "false" @default.
- W3000804940 isRetracted "false" @default.
- W3000804940 magId "3000804940" @default.
- W3000804940 workType "book-chapter" @default.