Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000807770> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3000807770 abstract "Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes need to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the Learning of Self-driving Vehicles Based on Real Driving Behavior Using Deep Neural Network Techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver is during driving is recorded in different situations and by converting the real driver’s driving video to images and transferring the data to an excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected." @default.
- W3000807770 created "2020-01-30" @default.
- W3000807770 creator A5012207220 @default.
- W3000807770 creator A5045248380 @default.
- W3000807770 creator A5050303907 @default.
- W3000807770 creator A5053895769 @default.
- W3000807770 creator A5056796328 @default.
- W3000807770 date "2020-11-30" @default.
- W3000807770 modified "2023-09-23" @default.
- W3000807770 title "Improving the Learning of Self-driving Vehicles Based on Real Driving Behavior using Deep Neural Network Techniques" @default.
- W3000807770 doi "https://doi.org/10.20944/preprints202001.0283.v3" @default.
- W3000807770 hasPublicationYear "2020" @default.
- W3000807770 type Work @default.
- W3000807770 sameAs 3000807770 @default.
- W3000807770 citedByCount "0" @default.
- W3000807770 crossrefType "posted-content" @default.
- W3000807770 hasAuthorship W3000807770A5012207220 @default.
- W3000807770 hasAuthorship W3000807770A5045248380 @default.
- W3000807770 hasAuthorship W3000807770A5050303907 @default.
- W3000807770 hasAuthorship W3000807770A5053895769 @default.
- W3000807770 hasAuthorship W3000807770A5056796328 @default.
- W3000807770 hasBestOaLocation W30008077701 @default.
- W3000807770 hasConcept C111919701 @default.
- W3000807770 hasConcept C117896860 @default.
- W3000807770 hasConcept C119857082 @default.
- W3000807770 hasConcept C121332964 @default.
- W3000807770 hasConcept C127413603 @default.
- W3000807770 hasConcept C154945302 @default.
- W3000807770 hasConcept C171146098 @default.
- W3000807770 hasConcept C17744445 @default.
- W3000807770 hasConcept C199539241 @default.
- W3000807770 hasConcept C2776650193 @default.
- W3000807770 hasConcept C2780999251 @default.
- W3000807770 hasConcept C41008148 @default.
- W3000807770 hasConcept C44154836 @default.
- W3000807770 hasConcept C50644808 @default.
- W3000807770 hasConcept C519991488 @default.
- W3000807770 hasConcept C74650414 @default.
- W3000807770 hasConcept C81363708 @default.
- W3000807770 hasConceptScore W3000807770C111919701 @default.
- W3000807770 hasConceptScore W3000807770C117896860 @default.
- W3000807770 hasConceptScore W3000807770C119857082 @default.
- W3000807770 hasConceptScore W3000807770C121332964 @default.
- W3000807770 hasConceptScore W3000807770C127413603 @default.
- W3000807770 hasConceptScore W3000807770C154945302 @default.
- W3000807770 hasConceptScore W3000807770C171146098 @default.
- W3000807770 hasConceptScore W3000807770C17744445 @default.
- W3000807770 hasConceptScore W3000807770C199539241 @default.
- W3000807770 hasConceptScore W3000807770C2776650193 @default.
- W3000807770 hasConceptScore W3000807770C2780999251 @default.
- W3000807770 hasConceptScore W3000807770C41008148 @default.
- W3000807770 hasConceptScore W3000807770C44154836 @default.
- W3000807770 hasConceptScore W3000807770C50644808 @default.
- W3000807770 hasConceptScore W3000807770C519991488 @default.
- W3000807770 hasConceptScore W3000807770C74650414 @default.
- W3000807770 hasConceptScore W3000807770C81363708 @default.
- W3000807770 hasLocation W30008077701 @default.
- W3000807770 hasOpenAccess W3000807770 @default.
- W3000807770 hasPrimaryLocation W30008077701 @default.
- W3000807770 hasRelatedWork W12461812 @default.
- W3000807770 hasRelatedWork W12793662 @default.
- W3000807770 hasRelatedWork W1562032 @default.
- W3000807770 hasRelatedWork W1605477 @default.
- W3000807770 hasRelatedWork W2800814 @default.
- W3000807770 hasRelatedWork W4825248 @default.
- W3000807770 hasRelatedWork W5848154 @default.
- W3000807770 hasRelatedWork W9190101 @default.
- W3000807770 hasRelatedWork W9333608 @default.
- W3000807770 hasRelatedWork W9565234 @default.
- W3000807770 isParatext "false" @default.
- W3000807770 isRetracted "false" @default.
- W3000807770 magId "3000807770" @default.
- W3000807770 workType "article" @default.