Matches in SemOpenAlex for { <https://semopenalex.org/work/W3000857549> ?p ?o ?g. }
- W3000857549 endingPage "170" @default.
- W3000857549 startingPage "161" @default.
- W3000857549 abstract "In attempting to quantify statistically the density structure of the interstellar medium, astronomers have considered a variety of fractal models. Here we argue that, to properly characterise a fractal model, one needs to define precisely the algorithm used to generate the density field, and to specify -- at least -- three parameters: one parameter constrains the spatial structure of the field; one parameter constrains the density contrast between structures on different scales; and one parameter constrains the dynamic range of spatial scales over which self-similarity is expected (either due to physical considerations, or due to the limitations of the observational or numerical technique generating the input data). A realistic fractal field must also be noisy and non-periodic. We illustrate this with the exponentiated fractional Brownian motion (xfBm) algorithm, which is popular because it delivers an approximately lognormal density field, and for which the three parameters are, respectively, the power spectrum exponent, $beta$, the exponentiating factor, ${cal S}$, and the dynamic range, ${cal R}$. We then explore and compare two approaches that might be used to estimate these parameters: Machine Learning and the established $Delta$-Variance procedure. We show that for $2leqbeta leq 4$ and $0leq{cal S}leq 3$, a suitably trained Convolutional Neural Network is able to estimate objectively both $beta$ (with root-mean-square error $epsilon_{_beta}sim 0.12$) and ${cal S}$ (with $epsilon_{_{cal S}}sim 0.29$). $;Delta$-variance is also able to estimate $beta$, albeit with a somewhat larger error ($epsilon_{_beta}sim 0.17$) and with some human intervention, but is not able to estimate ${cal S}$." @default.
- W3000857549 created "2020-01-30" @default.
- W3000857549 creator A5009778361 @default.
- W3000857549 creator A5024319150 @default.
- W3000857549 creator A5043668536 @default.
- W3000857549 date "2020-01-20" @default.
- W3000857549 modified "2023-10-14" @default.
- W3000857549 title "Characterizing lognormal fractional-Brownian-motion density fields with a convolutional neural network" @default.
- W3000857549 cites W1966351257 @default.
- W3000857549 cites W1970766685 @default.
- W3000857549 cites W1981452390 @default.
- W3000857549 cites W1982178723 @default.
- W3000857549 cites W2004501724 @default.
- W3000857549 cites W2013965924 @default.
- W3000857549 cites W2035809542 @default.
- W3000857549 cites W2044738244 @default.
- W3000857549 cites W2048462206 @default.
- W3000857549 cites W2051082354 @default.
- W3000857549 cites W2063626065 @default.
- W3000857549 cites W2071862938 @default.
- W3000857549 cites W2073098025 @default.
- W3000857549 cites W2075057122 @default.
- W3000857549 cites W2079648218 @default.
- W3000857549 cites W2094650845 @default.
- W3000857549 cites W2135332747 @default.
- W3000857549 cites W2141125852 @default.
- W3000857549 cites W2163780962 @default.
- W3000857549 cites W2530043748 @default.
- W3000857549 cites W2618530766 @default.
- W3000857549 cites W2796728449 @default.
- W3000857549 cites W2883232434 @default.
- W3000857549 cites W2886860723 @default.
- W3000857549 cites W2944138730 @default.
- W3000857549 cites W2953686655 @default.
- W3000857549 cites W3099749108 @default.
- W3000857549 cites W3104760060 @default.
- W3000857549 cites W3105875108 @default.
- W3000857549 cites W3106375445 @default.
- W3000857549 cites W3121135149 @default.
- W3000857549 cites W4243066586 @default.
- W3000857549 cites W4246545512 @default.
- W3000857549 cites W4298193632 @default.
- W3000857549 cites W4300856972 @default.
- W3000857549 cites W624176039 @default.
- W3000857549 doi "https://doi.org/10.1093/mnras/staa122" @default.
- W3000857549 hasPublicationYear "2020" @default.
- W3000857549 type Work @default.
- W3000857549 sameAs 3000857549 @default.
- W3000857549 citedByCount "2" @default.
- W3000857549 countsByYear W30008575492022 @default.
- W3000857549 countsByYear W30008575492023 @default.
- W3000857549 crossrefType "journal-article" @default.
- W3000857549 hasAuthorship W3000857549A5009778361 @default.
- W3000857549 hasAuthorship W3000857549A5024319150 @default.
- W3000857549 hasAuthorship W3000857549A5043668536 @default.
- W3000857549 hasBestOaLocation W30008575492 @default.
- W3000857549 hasConcept C105795698 @default.
- W3000857549 hasConcept C108819105 @default.
- W3000857549 hasConcept C112401455 @default.
- W3000857549 hasConcept C11413529 @default.
- W3000857549 hasConcept C121332964 @default.
- W3000857549 hasConcept C121864883 @default.
- W3000857549 hasConcept C134306372 @default.
- W3000857549 hasConcept C138885662 @default.
- W3000857549 hasConcept C139945424 @default.
- W3000857549 hasConcept C151620405 @default.
- W3000857549 hasConcept C159985019 @default.
- W3000857549 hasConcept C168110828 @default.
- W3000857549 hasConcept C192562407 @default.
- W3000857549 hasConcept C202444582 @default.
- W3000857549 hasConcept C204323151 @default.
- W3000857549 hasConcept C2780388253 @default.
- W3000857549 hasConcept C33923547 @default.
- W3000857549 hasConcept C40636538 @default.
- W3000857549 hasConcept C41895202 @default.
- W3000857549 hasConcept C62520636 @default.
- W3000857549 hasConcept C9652623 @default.
- W3000857549 hasConcept C96835011 @default.
- W3000857549 hasConceptScore W3000857549C105795698 @default.
- W3000857549 hasConceptScore W3000857549C108819105 @default.
- W3000857549 hasConceptScore W3000857549C112401455 @default.
- W3000857549 hasConceptScore W3000857549C11413529 @default.
- W3000857549 hasConceptScore W3000857549C121332964 @default.
- W3000857549 hasConceptScore W3000857549C121864883 @default.
- W3000857549 hasConceptScore W3000857549C134306372 @default.
- W3000857549 hasConceptScore W3000857549C138885662 @default.
- W3000857549 hasConceptScore W3000857549C139945424 @default.
- W3000857549 hasConceptScore W3000857549C151620405 @default.
- W3000857549 hasConceptScore W3000857549C159985019 @default.
- W3000857549 hasConceptScore W3000857549C168110828 @default.
- W3000857549 hasConceptScore W3000857549C192562407 @default.
- W3000857549 hasConceptScore W3000857549C202444582 @default.
- W3000857549 hasConceptScore W3000857549C204323151 @default.
- W3000857549 hasConceptScore W3000857549C2780388253 @default.
- W3000857549 hasConceptScore W3000857549C33923547 @default.
- W3000857549 hasConceptScore W3000857549C40636538 @default.
- W3000857549 hasConceptScore W3000857549C41895202 @default.
- W3000857549 hasConceptScore W3000857549C62520636 @default.